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Abbreviations: UASNs, underwater acoustic sensor networks; 
BER, bit error ratio; AUV, autonomous underwater vehicle; RCAP, 
reliable collection based on auv with prediction.

Introduction
The underwater acoustic sensor networks (UASNs) is a kind of 

new marine measurement and control technology that combines 
autonomous data acquisition, data fusion and transmission 
applications in oceanographic data collection, water pollution 
monitoring, earthquake and tsunami prediction, marine navigation 
and underwater military surveillance, enemy target tracking and other 
aspects of the potential application value. So that the military and 
scientific research departments attach great importance to it. In recent 
years, China has proposed the strategic requirements of building a 
strong marine power, and the key technologies of the underwater 
acoustic sensor network are listed as the key research directions. The 
related researches mainly focus on the fields of MAC protocol, routing 
protocol, clock synchronization location, target recognition tracking 
and so on. However, the main problem affecting the performance of 
the underwater acoustic network is that the energy of the underwater 
nodes is limited and easy to disappear. Although the current research 
scholars have adopted a variety of routing protocols to minimize node 
energy consumption, such as the choice of the next hop node, the 
node between the rotation of the cluster head to balance the energy, 
the communication between the network nodes is still multi-hop 
transmission, and relay nodes are always more likely to consume 
energy and to be failure, based on multi-hop routing energy-saving 
breakthrough. Some scholars have proposed to use AUV to load 
energy and make supplement to the sensor nodes on a regular basis, 
although it is feasible, the node energy acquisition process is difficult 

to control by man-made control and cannot guarantee the sensor node 
long-term normal work. In addition, the harsh and unpredictable 
underwater application environment poses a significant challenge to 
routing tasks.1-3

In order to effectively and reliably collect data, jump out of the 
whole network node multi-hop transmission architecture, research 
scholars have proposed a mobile gateway to collect data.4,5 In this 
method, the AUV is used as the mobile gateway, and the corresponding 
sensor nodes are polled periodically to collect the relevant perceptual 
data. This method can effectively reduce the energy consumption 
of the sensor nodes, and AUV interact with the sensor nodes when 
the distance is close with reliable communication, effectively 
reducing packet loss rate and improving the network life cycle. In 
these schemes, there are multiple types of polling paths designed to 
improve the efficiency of data collection. Some researchers discuss 
the different polling objects, such as polling the cluster heads, random 
polling and so on. While some researchers discuss the different AUV 
polls structures, which are divided into level polling and vertical 
polling. The objective of our paper is to propose a predictive online 
learning polling model. With the random occurrence of underwater 
target events, the AUV can continue to learn and predict, and 
reasonably plan the polling process in the polling process, so as to 
increase polling in the target event aggregation area, reduce polling 
in the target event sparse, and perceive data less region. So that the 
data collection efficiency can be improved. The model can be applied 
to a variety of existing polling architectures, with good adaptability 
and promotion. The organization structure of the remaining part of 
this paper is as follows: the Section 2 of this paper discusses the 
related work and the existing problems; the Section 3 of this paper 
describes the online learning prediction model; in Section 4 of this 
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Abstract

The communication process in Underwater Acoustic Sensor Networks (UASNs) is 
susceptible to interference, which leads to higher latency and Bit Error Ratio (BER). The 
Autonomous Underwater Vehicle (AUV) polling to collect data has been used to provide 
reliable transmission of data and extend the network lifecycle. The target events underwater 
are random appeared. In order to effectively capture the target event, an algorithm for the 
AUV polling to collect data with online prediction is proposed, namely RCAP (Reliable 
Collection based on AUV with Prediction). Firstly, the polling objects to AUV should be 
determined. The clustered network structure is established. The cluster head will be polled 
by the AUV to transfer the data from the cluster. Secondly, the forecast model is build. The 
first N rounds of data collected are the historical data. Using the historical data, the data of 
the N+1th round is predicted based on the regression method. Then, the N+1 to 2N rounds 
of data are used to calibrate the predicted values, and the prediction model is optimized. 
Finally, the AUV polling trajectory would be plan. All the cluster head have storage 
threshold. According to the data volume prediction of each cluster head, the AUV polling 
objects of each round can be determined to maximize the amount of data collection and to 
improve network efficiency. The simulation results show that the algorithm can adapt to the 
prediction of target events in a variety of distributions. Especially, when the target events 
obey the linear distribution, compared with AAEERP, RCAP has a great optimization in 
network energy consumption, throughput, data transmission efficiency. It increases nearly 
10% throughput especially.

Keywords: Underwater acoustic sensor networks(UASNs); Polling for data collection; 
online prediction; Clustering interaction
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paper, the validity and rationality of the model proposed in this paper 
is validated through contrast experiments, and conduct performance 
evaluation. The full text is summarized and prospected in Section.

Related work
For the underwater complex tasks, it is necessary to have fixed 

nodes to monitor the target area in real time, and the mobile nodes 
are required to dynamically capture the abnormal state. Therefore, 
the three-dimensional heterogeneous dynamic model becomes the 
mainstream model of the current underwater network operation and 
maintenance. Taking into account the cost of AUVs, there is only a 
small number of AUVs are deployed in network, most of them are 
the ordinary sensor nodes. As the AUVs function is strong and energy 
is high, it has a good effect in the aspect of the reliable transmission 
of data. To this end, the researchers put forward a series of AUVs 
auxiliary underwater acoustic sensor networks data reliable collection 
algorithm, only the AUVs mobility is used to collect data information 
to the ordinary node polling. The network architecture can be roughly 
divided into horizontal polling and vertical polling and as shown in 
Figure 1.

Figure 1 Reliable Collection Architecture based AUV in Underwater Acoustic 
Sensor Networks.6,13

Initially, the horizontal polling architecture is aimed at a two-
dimensional network of sensor nodes at the bottom. AEERP6 uses 
a single AUV to interact with the underlying gateway. The bottom 
gateway node is replaced by a randomly selected method and set the 
energy consumption threshold. The shortest path tree construction 
method is used in other nodes to connect with the nearest gateway 
to generate the network topology. This method effectively reduces 
the number of hops of the data transmitted by the underwater nodes, 
reduces the error codes caused by the attenuation, and ensures the 
integrity and reliability of the data. Based on the horizontal polling, 
AURP7 constructs a number of AUVs polling architectures for the 
first time and designs the elliptical trajectory, and uses heterogeneous 
acoustic communication channel. Three kinds of data transmission 
methods are designed according to the distance, which can reduce 
the same frequency interference with each other. Khan8 proposed a 
hierarchical clustering structure and the bottom nodes are divided 
into three categories of underwater gateway node, path node and 
ordinary node. The underwater gateway node is the cluster head, 
and the path nodes on the AUV polling path that will be interactive, 
and the ordinary node is used as an alternative to replace the energy 

node with too large energy consumption. The AUV greatly increases 
the transmission rate of the packet and reduces the overall energy 
consumption by interacting with multiple path nodes. However, the 
algorithm needs to divide the monitoring sea area according to the 
number of underwater gateway nodes. The preprocessing process is 
cumbersome, and the selection of multiple path nodes is controlled 
by the underwater gateway nodes, and the higher performance of the 
gateway node is required.

TCM algorithm9 is suitable for dynamic 2D underwater 
environment. The particle swarm optimization algorithm is used for 
the bottom nodes to cluster. The horizontal polling way is used by 
AUV to interactively access dynamic cluster head. Although it is 
more suitable for dynamic underwater environment, TCM algorithm 
still has many disadvantages. For example, the cluster head changes 
frequently, it need to constantly notify the AUV node new cluster 
head ID. Then, the network energy consumption increased. In Shah,10, 
the horizontal architecture can only be deployed by hierarchical in 
3D environment. Each layer has a separate AUV polling to achieve 
reliable data collection and forwarding. To this end, a vertical polling 
architecture of the polling method is proposed in Umar.11 By the 
definition of the depth of the node, the AUV vertical motion is used to 
transfer the data from the high depth region to the low depth region. 
For the three-dimensional dynamic underwater environment, the 
LVRP algorithm Shi12 is used and the gateway selection according 
to the Voronoi formed among the nodes. It can effectively improve 
network performance by combining with AUV vertical polling.

The RE-AEDG algorithm Liaqat13 compares the horizontal and 
vertical polling and combines them together. In RE-AEDG , the 
underwater nodes randomly deployed are divided into five layers, and 
the nodes at the second layer and the fourth layer are the gateway 
nodes, and the nodes at the same layer do not communicate with each 
other. The nodes at the first, third and fifth layers are used to delivery 
data by selecting the nearest gateway according to the distance. The 
AUV vertical oval polling in the second and fourth layers is to achieve 
reliable data collection. However, the method requires that the 
surface nodes send the data to the water gateway, and then returned 
to the surface by the AUV, which will result in energy waste. As the 
two-dimensional network for the level of polling method is more 
mature, there are more ways to optimize this. AAEERP Ilyas14 has 
been improved on the basis of AEERP, and it is considered that the 
staying time of AUVs in each gateway should be different. Because 
the shortest path trees generated by different underwater gateway 
nodes are not the same, the more member nodes are, the more data 
should be collected. Therefore, the staying time of the AUV should 
be proportional to the number of nodes of the gateway members. 
Compared to the AEERP algorithm, AAEERP has lower power 
consumption and higher data collection capabilities.

AEDG Javaid15 discusses the elliptical trajectory of AUV 
horizontal polling. According to the selection area of underwater 
gateway nodes, the radius parameter of ellipse is discussed, which 
can be used to optimize the AUV polling trajectory based on changes 
in the gateway. Kartha16 discusses the polling trajectories of AUV 
in different scenarios from the perspective of delayed tolerances, 
including square polling, helical polling, and elliptical polling and so 
on. A network data collection framework is effectively established for 
different situations, and can be used for more flexible implementation 
of different service strategies. In Khan,17 four AUVs interactive polling 
optimization algorithms are designed on the basis of hierarchical 

AUV ordinary sensor node

cluster header node(gateway)
communication link
AUV’s motion

(a) horizontal polling architecture (b) vertical polling architecture
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clustering structure in Khan.8 The method is defined to share the state 
information of four AUVs. This method not only realizes the data 
collection and transmission to the water gateway, but also can help 
communicate data between the two-dimensional layer nodes through 
the cooperative communication between the four AUVs. In Dalal,18 a 
scalable data encryption and decryption algorithm is designed based 
on AURP for underwater safety challenges. Different AUVs are used 
for different monitoring waters, and each AUV collects data relying 
with the gateway node matching key of its monitoring waters. This 
method guarantees the network security and optimizes the network 
performance.

To sum up, the existing polling method mainly has the following 
problems:

a.	 Most of the existing polling architectures are deployed according 
to two-dimensional plane of sensor nodes. There are few methods 
for three-dimensional space polling with large loopholes and are 
not suitable for large-scale promotion.

b.	 The polling trajectory of the AUV is fixed. Even if there are 
literature Kartha16 focused on the merits of different polling 
trajectories, the various trajectories used in the network life 
cycle are fixed. The fixed trajectory can’t adapt to the dynamic 
evolution of underwater network. It is difficult to ensure the 
reliability of data communication after the replacement of the 
interactive nodes, and cannot guarantee the efficiency of data 
collection at all times.

c.	 The randomness of the target event is not considered. The data 
collection across the entire network should be considered in 
the existing polling architecture, and the networks deployed in 
most of water areas are targeted. In order to extend the life of 
the network and reduce the energy consumption of the nodes, it 
is necessary to collect the monitoring data of the target events 
and collect the information of the whole network, which not only 
enhances the energy consumption of the node, but also makes the 
processing of the subsequent data more complicated.

d.	 The AUV energy consumption problem is not considered. It is 
assumed that AUV nodes are infinite energy in most of articles, 
regardless of their energy consumption problems in the network. 
Most of the algorithms are designed to sacrifice AUV energy 
consumption in exchange for the life of ordinary sensor nodes. 
Although AUV energy is several orders of magnitude compared 
to ordinary sensor nodes, there are still energy limits, and the 
energy which is assumed infinite is not realistic.

In view of the above problems, this paper analyzes the shortcomings 
of the current polling architectures, and proposes the AUV online 
learning polling trajectory prediction model, which can be applied to 
any of the above structures to improve the network data collection 
performance.

RCAP model based on time series analysis
Preparation work

Firstly, we introduce the function definition of each node in the 
network: 

Interactive nodes: the nodes in the network are clustered and the 
cluster head nodes are used as the interaction nodes. They are used 
for collecting the perceived data of other nodes in the cluster and 
delivering them to the AUV nodes.

Ordinary nodes: they are used for monitoring the target events in 
the network and delivering the perceived data to the cluster head 
interaction nodes of the cluster itself. 

AUV: it is used for polling the interactive nodes in the network, and 
collects and delivers it to the gateway nodes on a regular basis.

This section will introduce the online learning trajectory prediction 
model. In order to facilitate the analysis and solution of the model, the 
following assumptions are given under the premise of reliability in 
line with the actual application scenarios: 

Assumption 1: each node knows its location information after 
deployment, and the AUV has the autonomous positioning function.

Assumption 2: AUV energy is much larger than the sensor node not 
unlimited, regardless of its failure in the process of operation.

Assumption 3: the sensor node has a certain capacity of store.

(Figure 2) The key to collect data by AUV polling lies in two 
points: one is what nodes to be polled; the other is how to poll these 
nodes. In the case of question 1, the existing literature generally 
deals with the established trajectory of the AUV, and the nodes near 
the trajectory are set as the polled node. The remaining nodes in the 
small-scale network can transmit the self-perceived data to the other 
Inquiry node by mean of near transmission. Large-scale networks are 
clustered depending on the nodes being polled, and the remaining 
nodes transmit the perceived data to the cluster heads to achieve AUV 
node on the whole network data collection. In the case of question 2, 
the repetition traversal method is used in most of existing literatures, 
which repeated polling along the established trajectory, until the end 
of the acquisition task and no data aggregation. Since the time interval 
exists in AUV node polling, the data collected by AUV from the same 
node at a time can form a set of sequences. Due to the uncertainty 
of the underwater environment, the target events monitored by each 
region are not the same, and the number of packets perceived and 
collected is different. There are many packets of AUV to be delivered 
by some interactive nodes, and the few packets are delivered by other 
interactive nodes. Therefore, the uniform traversal of each node to 
be interactive not only can reduce the efficiency of AUV polling, 
but also increase the packet delay. Therefore, this paper designs the 
online learning prediction model based on time Series Analysis, learns 
the historical data of the pre-traversal of the AUV, and makes the 
prediction of the number of interactive nodes in subsequent polling 
and determines to carry out the interaction according to the size of the 
predicted data node polling.

In this paper, the prediction polling is divided into two parts. The 
first part is the generation of the prediction model and the other part is 
the planning of the AUV polling trajectory. The number and location 
of the interaction nodes are determined using the method specified in 
literature.11 After the cluster, there is a total of N and expressed as S, 
and the set of all the nodes is 1 2 3{ , , ... }nS s s s s= . The time interval of 
the data collection is set to be T , that is, AUV polling is done every 
T time, and the data of the interactive node shall be collected. The 
interactive node is used for tagging the first packet as Tj within each 
interval. ijx  means the amount of data collected by the is  node during 
the j time. The number of packets generated by the 1s  node in the 1T  
time period is 11x .

Generation of prediction model

Since the model is used to predict historical data required to be 
used, it is assumed that AUV is used in the whole network polling 
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in the first ten times. The sliding window is used for the selection of 
the historical data, and the size of the sliding window is initially set 
to be 5. That is, using the historical data of 1 to 5 of time periods to 
generate the prediction model, and slide five times and use 6 to 10 of 
time periods to modify the model to determine the prediction model 
Figure 3.

Figure 2 Polling model schematic.

Figure 3 Sliding window schematic.

For node iN , the amount of data packet collected in the first 
five time intervals is 1 2 3 4 5, , , ,i i i i ix x x x x . The predictive vector is 

( )1 2 3 4 5, , , , , Tθ θ θ θ θ θ θ= . And it is used to adjust the influence of 
each component the historical data on the late data prediction. The 

iN  amount of data in the sixth time period can be predicted by the 
following formula:

	
(5)

6 1 1 2 2 3 3 4 4 5 5
( ) T

i i i i i i
x x x x x x Xθ θ θ θ θ θ= + + + + =  (1)

General expression of the estimation function in the prediction 
model is as follows:

		       ( 1)( ) T j
jh x Xθ θ −=

Since the length of the sliding window is set to be 5, the 1jX −  is 
used to express the vector consisting of five window data up to 1jx − , 
i.e 1

5 4 3 2 1( , , , , )j
j j j j jX x x x x x−
− − − − −=

Due to the random generation of initial prediction vector θ  , the 
gradient descent model is used to calibrate the predictive variables 
in order to make the late prediction more accurate. The actual packet 
of is  node collected at the 6T  time period is 6ix  , and the prediction 
error is:

		

θ

5
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= −

= − θ
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x X
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The error function of ( )jJ θ  can be used to describe the pros and 
cons of the estimation function of ( )jh xθ . The expression of the error 
function is:
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In order to minimize the value of the error function to get min Jθ  
, the location where the gradient of the function decreases most fast, 
that is, the partial derivative of the function can be expressed as:
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And then the prediction vector of θ  is updated and the vector θ  
is reduced in the direction of the smallest gradient. The updated θ′  
can be expressed as:

		
( 1) ( 1)

( )

( )T j j

j

J

X x X

θ θ α θ
θ

θ α θ − −

∂
′ = −

∂

= − −
 	         (5)

Where α  refers to step size, i.e. the variable quantity is changed 
with the direction of gradient reduction each time. As the gradient is 
directional, for vector of θ  , a gradient direction can be solved for 
each component, so that a whole direction can be solved. At the time 
of the change, the function is changed towards the direction of the 
most down to reach a minimum point, which is to ensure the minimum 
error. It can be described in a simpler mathematical language, namely:
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 		          (6)

			   Jα θθ θ −= ∇  		           (7)

Wherein ∇  refers to gradient. When J  is equal to 6 to 10, five 
verifications can be made separately to the ( )jh xθ  to obtain a more 
effective predictive value, which can be used to predict the data packet 
that may be generated by the late interactive nodes, so as to plan the 
reasonable polling trajectory of AUV, and realize the maximization of 
data collection efficiency and minimize the delay.

Planning of AUV polling trajectory

Through the prediction model in the section 3.2, it is possible 
to effectively estimate the number of packets aggregated by each 
interactive node in the next period of T. According to assumption 3, 
the sensor node has a certain storage capacity and the value is set to 
be is , when the amount of data generated by is  node in the current 
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period of T time is few, the point is polled by AUV and the harvest is 
low, which increases the network delay.

The steps of AUV polling trajectory planning strategy proposed in 
this section are as follows:

Step 1: the prediction model is used to estimate the amount of data 
packets generated by two consecutive periods of T for each interactive 
node. Determine if the node storage threshold of NC  is exceeded.

Step 2: if it is predicted that the sum of data packets volumes 
generated by interaction node of is  during the two time intervals of T 
is over the storage threshold, it indicates that the AUV must poll the 
node; otherwise it will cause packet loss. The node of is  is included 
in the path planning considerations.

Step 3: if it is predicted that the sum of data packets volumes generated 
by interaction node of is  during the two time intervals of T is not over 
the storage threshold, it is not necessary to traverse the node. The node 
will not be considered in the path planning.

Step 4: make statistics of the polling nodes, and develop a reasonable 
planning route according to the location of each node.

Step 5: after traversing the selected node, the estimated function is 
continually calibrated using the new round of data collected.

Step 6: if the node of is  has not been included in the path plan after 
the prediction for twice, it will be direct traversal at the third time 
without predicting (Figure 4).

Figure 4 AUV polling trajectory planning flow chart.

Simulation experiment
In order to validate the versatility and validity of the model, the 

model is applied to the representative AAEERP14 horizontal polling 
architecture, and 4 groups of experiments are designed with its original 
model for comparison from sensor node energy consumption, network 
throughput, packet transmission rate, end-to-end delay design:

a)	 Energy consumption: during the network monitoring, the total 
amount of energy consumed by all sensor nodes is mainly for 
data transmission and reception. The energy consumption unit 
is Joule (J).

b)	 Throughput: refers to the amount of data transferred from sender 
to receiver. The network throughput has directly affects on the 
number of nodes in the network for data transmission and the 
duration of that number. The unit of throughput is bit.

c)	 Packet delivery ratio: refers to the ratio of data packet successfully 
transmitted to the water gateway by AUV to the total amount of 
data packet generated by the network.

d)	 End-to-end delay: refers to the total time that the data packet is 
transmitted to the water gateway. The unit is sec (s).

According to the experimental parameters of the horizontal polling 
architecture AAEERP,14 the compared parameters of the simulation 
experiment are as follows: the underwater sensor nodes and AUV are 
deployed in the 1500m * 2000m area. A different number of sensor 
nodes are deployed to demonstrate the utility of the data collection 
algorithm in the underwater acoustic sensor networks of different 
sizes. It is assumed that UWSNs have different numbers of sensor 
nodes of 18, 30, 42, 54 and 64; the sensor node transmission range is 
250m, and the initial energy is 70 joules and the size of each packet is 
70 bytes. It is assumed that no collision exists between the underwater 
communication channels and the interference effects between the 
channels are ignored. The specific simulation parameters are as shown 
in Table 1. Considering the randomness of the underwater target 
monitoring event, the feasibility of the RCAP is verified firstly.

Table 1 Horizontal polling experimental parameters 

Parameters Values

Monitoring range 2000m*1500m

Number of nodes 18,30,42,54,64

Initial energy of node 70J

Data collection factor 0.6

Size of data packet 70bytes

Node transmission range 250m

Number of AUVs 1

Experiment 1: Feasibility verification of reliable 
collection algorithm based on AUV with prediction

The error rate of the data collection algorithm is based on the 
distribution of various target events, such as linear distribution, 
normal distribution and Poisson distribution. The experimental results 
are shown in Figure 5. The error rate of the data transmission is 
predicted in the case of various target events with the increase of the 
size of the network. For the target event of the linear distribution (the 
distribution of the event is subject to the AR model), the error rate 
of the prediction algorithm is kept at a low level, and the larger the 
network size is, the lower the predicted error rate is. This is because 
the time series analysis used in this paper is based on historical data 
to conduct iterative prediction, and it is a better trend forecast for 
the linear distribution. When the event in the network subjects to the 
normal distribution, the error rate of the algorithm is higher than that 
of the forecasting algorithm, but it tends to be stable with the increase 
of the network scale. Although it is not as accurate as the prediction 
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packet of each interactive node in 

two consecutive T times

It is determined that the amount 
of data of node Si exceeds the 

threshold CN

The node Si is 
incorporated into the 

polling trajectory 
planning to determine the 
AUV polling trajectory

It is determined that 
the node Si is not 

polled twice.

Waiting for the next T 
time to predict

End

N

N

Y
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of linear distribution events, as a whole, the prediction of events in 
large-scale networks can be less than 30%, and the trend is convergent 
and has a certain of operability. For the Poisson distribution event, 
this paper predicts that the effect of the algorithm fluctuates greatly, 
the average error rate is about 50%, and the trend diverges and the 
operability is not strong. To this end, the simulation experiment of 
data collection algorithm is carried out under the premise of linear 
distribution and normal distribution of target events. The experiments 
numbered from 2 to 5 are the comparison of energy consumption, 
throughput, transmission rate and time delay for the AAEERP 
horizontal polling architecture.

Figure 5 Error rate comparison of predictive algorithms in different event 
distribution.

Experiment 2: Comparison of network energy 
consumption

AAEERP algorithm and the algorithms specified in this paper are 
used for data transmission under the circumstances of different event 
distribution, and the total energy consumption of the entire network is 
calculated. The data results are shown in Figure 6. It can be seen from 
Figure 6 that the RCAP (AR) prediction algorithm is more accurate 
and the energy consumption is lower for the target event with linear 
distribution. Compared with the AAEERP algorithm which follows 
the elliptical motion, the AUV trajectory designed in this paper is 
more flexible and the number of unnecessary polling is reduced to 
effectively improve the efficiency of data collection. In case of the 
target event of normal distribution, since RCAP (normal) prediction 
effect is relatively poor, compared to linear prediction, the energy 
consumption is greater.

Experiment 3: Throughput comparison

AAEERP algorithm and the algorithms specified in this paper are 
used for data transmission under the circumstances of different event 
distribution, and the total amount of the data packet transmitted from 
source mode to destination node is calculated. The data results are 
shown in Figure 7. Figure 7 shows the throughput of each algorithm. 
It can be seen that under the target event of linear distribution, the 
RCAP (AR) prediction algorithm is accurate, the data transmission 
efficiency is high, the throughput is increased with the increase of the 
network scale, and the gain is higher. For the AAEERP algorithm, the 
network throughput is at the middle level and tends to be stable and 
the rising space is small. For the target event with normal distribution, 

the RCAP (normal) prediction algorithm has a small increase in 
throughput, but the network throughput rises and the rising trend is 
obvious subsequently.

Figure 6 Comparison diagram of energy consumption.

Figure 7 Comparison diagram of throughput.

Experiment 4: Comparison of data packet delivery 
ratio

AAEERP algorithm and the algorithms specified in this paper 
are used for data delivery under the circumstances of different event 
distribution, and the ratio of the data volume successfully delivered 
to the water gateway to the data volume actually generated in the 
network is calculated. The data statistics results are shown in Figure 
8. It can be seen from Figure 8 that the data delivery ratio obtained 
by the RCAP (AR) prediction algorithm is always higher and the 
reduction ratio is slower for the target event with linear distribution. 
This is because when the node used for interacting with the AUV is 
polled, the algorithm can change the polling trajectory in time, while 
the AAEERP algorithm still moves in accordance with the elliptical 
trajectory, increasing the packet loss rate. The larger the scale of 
the network, the easier the change of the interaction node, and the 
difference in the transmission efficiency between the AAEERP 
algorithm and this algorithm will be larger. It further shows the 
usability of this algorithm in large-scale networks.
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Experiment 5: Transmission delay comparison

AAEERP algorithm and the algorithms specified in this paper 
are used for data delivery under the circumstances of different event 
distribution, and the total amount of the data packet transmitted from 
source mode to water surface gateway is calculated. The data results 
are shown in Figure 9. Figure 9 shows the end-to-end delay of the 
AEERP and RCAP algorithms. In the AUV auxiliary data collection 
algorithm, the end-to-end delay depends primarily on the round-trip 
time and speed of the AUV. The AUV polling trajectory is fixed by 
AEERP algorithm, the round-trip time and speed are relatively fixed, 
and the overall delay tends to be at a moderate level. And the RCAP 
(AR) prediction algorithm makes the track of AUV change with the 
amount of data in the network, and the number of AUV polling is 
increased with the number of packets generated by the interaction 
node. On the contrary, for some nodes with few data packets, although 
the efficiency of AUV data collection is greatly enhanced due to 
fewer interaction numbers, the data stored by it will have to wait for 
a long time to be collected and delivered by AUV for the data packet 
generation node, which increases the network end-to-end delay to a 
certain extent.

Figure 8 Comparison diagram of data packet delivery ratio.

Figure 9 Comparison diagram of transmission delay.

Conclusion and expectation
In the current underwater acoustic sensor networks, the use of 

AUV polling to collect data has become an effective way to provide 
reliable transmission of data and extend the life cycle of the network. 
In this paper, a novel underwater polling method is proposed, namely 
RCAP (Reliable Collection based on AUV with Prediction). The 
AUV trajectory and its interaction time with each cluster head are 
scientifically developed, and the maximum number of propagation 
data and the minimization of the network delay are realized. The 
contributions of this paper are as follows:

a.	 The online prediction model for AUV polling is designed. 

b.	 The effectiveness of RCAP is discussed under different 
distributions of underwater target events. 

c.	 Compared with AEERP, it is verified that RCAP has certain 
advantages in network energy consumption, throughput and 
packet transmission rate, and has certain promotion value.
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