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The communication process in Underwater Acoustic Sensor Networks (UASNSs) is
susceptible to interference, which leads to higher latency and Bit Error Ratio (BER). The
Autonomous Underwater Vehicle (AUV) polling to collect data has been used to provide
reliable transmission of data and extend the network lifecycle. The target events underwater
are random appeared. In order to effectively capture the target event, an algorithm for the
AUV polling to collect data with online prediction is proposed, namely RCAP (Reliable
Collection based on AUV with Prediction). Firstly, the polling objects to AUV should be
determined. The clustered network structure is established. The cluster head will be polled
by the AUV to transfer the data from the cluster. Secondly, the forecast model is build. The
first N rounds of data collected are the historical data. Using the historical data, the data of
the N+1th round is predicted based on the regression method. Then, the N+1 to 2N rounds
of data are used to calibrate the predicted values, and the prediction model is optimized.
Finally, the AUV polling trajectory would be plan. All the cluster head have storage
threshold. According to the data volume prediction of each cluster head, the AUV polling
objects of each round can be determined to maximize the amount of data collection and to
improve network efficiency. The simulation results show that the algorithm can adapt to the
prediction of target events in a variety of distributions. Especially, when the target events
obey the linear distribution, compared with AAEERP, RCAP has a great optimization in
network energy consumption, throughput, data transmission efficiency. It increases nearly
10% throughput especially.
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Introduction

The underwater acoustic sensor networks (UASNs) is a kind of
new marine measurement and control technology that combines
autonomous data acquisition, data fusion and transmission
applications in oceanographic data collection, water pollution
monitoring, earthquake and tsunami prediction, marine navigation
and underwater military surveillance, enemy target tracking and other
aspects of the potential application value. So that the military and
scientific research departments attach great importance to it. In recent
years, China has proposed the strategic requirements of building a
strong marine power, and the key technologies of the underwater
acoustic sensor network are listed as the key research directions. The
related researches mainly focus on the fields of MAC protocol, routing
protocol, clock synchronization location, target recognition tracking
and so on. However, the main problem affecting the performance of
the underwater acoustic network is that the energy of the underwater
nodes is limited and easy to disappear. Although the current research
scholars have adopted a variety of routing protocols to minimize node
energy consumption, such as the choice of the next hop node, the
node between the rotation of the cluster head to balance the energy,
the communication between the network nodes is still multi-hop
transmission, and relay nodes are always more likely to consume
energy and to be failure, based on multi-hop routing energy-saving
breakthrough. Some scholars have proposed to use AUV to load
energy and make supplement to the sensor nodes on a regular basis,
although it is feasible, the node energy acquisition process is difficult

to control by man-made control and cannot guarantee the sensor node
long-term normal work. In addition, the harsh and unpredictable
underwater application environment poses a significant challenge to
routing tasks.!

In order to effectively and reliably collect data, jump out of the
whole network node multi-hop transmission architecture, research
scholars have proposed a mobile gateway to collect data.*’ In this
method, the AUV is used as the mobile gateway, and the corresponding
sensor nodes are polled periodically to collect the relevant perceptual
data. This method can effectively reduce the energy consumption
of the sensor nodes, and AUV interact with the sensor nodes when
the distance is close with reliable communication, effectively
reducing packet loss rate and improving the network life cycle. In
these schemes, there are multiple types of polling paths designed to
improve the efficiency of data collection. Some researchers discuss
the different polling objects, such as polling the cluster heads, random
polling and so on. While some researchers discuss the different AUV
polls structures, which are divided into level polling and vertical
polling. The objective of our paper is to propose a predictive online
learning polling model. With the random occurrence of underwater
target events, the AUV can continue to learn and predict, and
reasonably plan the polling process in the polling process, so as to
increase polling in the target event aggregation area, reduce polling
in the target event sparse, and perceive data less region. So that the
data collection efficiency can be improved. The model can be applied
to a variety of existing polling architectures, with good adaptability
and promotion. The organization structure of the remaining part of
this paper is as follows: the Section 2 of this paper discusses the
related work and the existing problems; the Section 3 of this paper
describes the online learning prediction model; in Section 4 of this
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paper, the validity and rationality of the model proposed in this paper
is validated through contrast experiments, and conduct performance
evaluation. The full text is summarized and prospected in Section.

Related work

For the underwater complex tasks, it is necessary to have fixed
nodes to monitor the target area in real time, and the mobile nodes
are required to dynamically capture the abnormal state. Therefore,
the three-dimensional heterogeneous dynamic model becomes the
mainstream model of the current underwater network operation and
maintenance. Taking into account the cost of AUVs, there is only a
small number of AUVs are deployed in network, most of them are
the ordinary sensor nodes. As the AUV function is strong and energy
is high, it has a good effect in the aspect of the reliable transmission
of data. To this end, the researchers put forward a series of AUVs
auxiliary underwater acoustic sensor networks data reliable collection
algorithm, only the AUVs mobility is used to collect data information
to the ordinary node polling. The network architecture can be roughly
divided into horizontal polling and vertical polling and as shown in
Figure 1.

ﬁ} AUV (O ordinary sensor node

[ cluster header node(gateway)
—= communication link

=== AUV’s motion

(a) horizontal polling architecture (b) vertical polling architecture

Figure | Reliable Collection Architecture based AUV in Underwater Acoustic
Sensor Networks.%'3

Initially, the horizontal polling architecture is aimed at a two-
dimensional network of sensor nodes at the bottom. AEERP® uses
a single AUV to interact with the underlying gateway. The bottom
gateway node is replaced by a randomly selected method and set the
energy consumption threshold. The shortest path tree construction
method is used in other nodes to connect with the nearest gateway
to generate the network topology. This method effectively reduces
the number of hops of the data transmitted by the underwater nodes,
reduces the error codes caused by the attenuation, and ensures the
integrity and reliability of the data. Based on the horizontal polling,
AURP’ constructs a number of AUVs polling architectures for the
first time and designs the elliptical trajectory, and uses heterogeneous
acoustic communication channel. Three kinds of data transmission
methods are designed according to the distance, which can reduce
the same frequency interference with each other. Khan® proposed a
hierarchical clustering structure and the bottom nodes are divided
into three categories of underwater gateway node, path node and
ordinary node. The underwater gateway node is the cluster head,
and the path nodes on the AUV polling path that will be interactive,
and the ordinary node is used as an alternative to replace the energy
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node with too large energy consumption. The AUV greatly increases
the transmission rate of the packet and reduces the overall energy
consumption by interacting with multiple path nodes. However, the
algorithm needs to divide the monitoring sea area according to the
number of underwater gateway nodes. The preprocessing process is
cumbersome, and the selection of multiple path nodes is controlled
by the underwater gateway nodes, and the higher performance of the
gateway node is required.

TCM algorithm® is suitable for dynamic 2D underwater
environment. The particle swarm optimization algorithm is used for
the bottom nodes to cluster. The horizontal polling way is used by
AUV to interactively access dynamic cluster head. Although it is
more suitable for dynamic underwater environment, TCM algorithm
still has many disadvantages. For example, the cluster head changes
frequently, it need to constantly notify the AUV node new cluster
head ID. Then, the network energy consumption increased. In Shah,',
the horizontal architecture can only be deployed by hierarchical in
3D environment. Each layer has a separate AUV polling to achieve
reliable data collection and forwarding. To this end, a vertical polling
architecture of the polling method is proposed in Umar.!" By the
definition of the depth of the node, the AUV vertical motion is used to
transfer the data from the high depth region to the low depth region.
For the three-dimensional dynamic underwater environment, the
LVRP algorithm Shi'? is used and the gateway selection according
to the Voronoi formed among the nodes. It can effectively improve
network performance by combining with AUV vertical polling.

The RE-AEDG algorithm Liagat'® compares the horizontal and
vertical polling and combines them together. In RE-AEDG , the
underwater nodes randomly deployed are divided into five layers, and
the nodes at the second layer and the fourth layer are the gateway
nodes, and the nodes at the same layer do not communicate with each
other. The nodes at the first, third and fifth layers are used to delivery
data by selecting the nearest gateway according to the distance. The
AUV vertical oval polling in the second and fourth layers is to achieve
reliable data collection. However, the method requires that the
surface nodes send the data to the water gateway, and then returned
to the surface by the AUV, which will result in energy waste. As the
two-dimensional network for the level of polling method is more
mature, there are more ways to optimize this. AAEERP Ilyas'* has
been improved on the basis of AEERP, and it is considered that the
staying time of AUVs in each gateway should be different. Because
the shortest path trees generated by different underwater gateway
nodes are not the same, the more member nodes are, the more data
should be collected. Therefore, the staying time of the AUV should
be proportional to the number of nodes of the gateway members.
Compared to the AEERP algorithm, AAEERP has lower power
consumption and higher data collection capabilities.

AEDG Javaid" discusses the elliptical trajectory of AUV
horizontal polling. According to the selection area of underwater
gateway nodes, the radius parameter of ellipse is discussed, which
can be used to optimize the AUV polling trajectory based on changes
in the gateway. Kartha'® discusses the polling trajectories of AUV
in different scenarios from the perspective of delayed tolerances,
including square polling, helical polling, and elliptical polling and so
on. A network data collection framework is effectively established for
different situations, and can be used for more flexible implementation
of different service strategies. In Khan,'” four AUVs interactive polling
optimization algorithms are designed on the basis of hierarchical
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clustering structure in Khan.® The method is defined to share the state
information of four AUVs. This method not only realizes the data
collection and transmission to the water gateway, but also can help
communicate data between the two-dimensional layer nodes through
the cooperative communication between the four AUVs. In Dalal,'® a
scalable data encryption and decryption algorithm is designed based
on AURP for underwater safety challenges. Different AUVs are used
for different monitoring waters, and each AUV collects data relying
with the gateway node matching key of its monitoring waters. This
method guarantees the network security and optimizes the network
performance.

To sum up, the existing polling method mainly has the following
problems:

a. Most of the existing polling architectures are deployed according
to two-dimensional plane of sensor nodes. There are few methods
for three-dimensional space polling with large loopholes and are
not suitable for large-scale promotion.

b. The polling trajectory of the AUV is fixed. Even if there are
literature Kartha'® focused on the merits of different polling
trajectories, the various trajectories used in the network life
cycle are fixed. The fixed trajectory can’t adapt to the dynamic
evolution of underwater network. It is difficult to ensure the
reliability of data communication after the replacement of the
interactive nodes, and cannot guarantee the efficiency of data
collection at all times.

c. The randomness of the target event is not considered. The data
collection across the entire network should be considered in
the existing polling architecture, and the networks deployed in
most of water areas are targeted. In order to extend the life of
the network and reduce the energy consumption of the nodes, it
is necessary to collect the monitoring data of the target events
and collect the information of the whole network, which not only
enhances the energy consumption of the node, but also makes the
processing of the subsequent data more complicated.

d. The AUV energy consumption problem is not considered. It is
assumed that AUV nodes are infinite energy in most of articles,
regardless of their energy consumption problems in the network.
Most of the algorithms are designed to sacrifice AUV energy
consumption in exchange for the life of ordinary sensor nodes.
Although AUV energy is several orders of magnitude compared
to ordinary sensor nodes, there are still energy limits, and the
energy which is assumed infinite is not realistic.

Inview of the above problems, this paper analyzes the shortcomings
of the current polling architectures, and proposes the AUV online
learning polling trajectory prediction model, which can be applied to
any of the above structures to improve the network data collection
performance.

RCAP model based on time series analysis
Preparation work

Firstly, we introduce the function definition of each node in the
network:

Interactive nodes: the nodes in the network are clustered and the
cluster head nodes are used as the interaction nodes. They are used
for collecting the perceived data of other nodes in the cluster and
delivering them to the AUV nodes.
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Ordinary nodes: they are used for monitoring the target events in
the network and delivering the perceived data to the cluster head
interaction nodes of the cluster itself.

AUV: it is used for polling the interactive nodes in the network, and
collects and delivers it to the gateway nodes on a regular basis.

This section will introduce the online learning trajectory prediction
model. In order to facilitate the analysis and solution of the model, the
following assumptions are given under the premise of reliability in
line with the actual application scenarios:

Assumption 1: each node knows its location information after
deployment, and the AUV has the autonomous positioning function.

Assumption 2: AUV energy is much larger than the sensor node not
unlimited, regardless of its failure in the process of operation.

Assumption 3: the sensor node has a certain capacity of store.

(Figure 2) The key to collect data by AUV polling lies in two
points: one is what nodes to be polled; the other is how to poll these
nodes. In the case of question 1, the existing literature generally
deals with the established trajectory of the AUV, and the nodes near
the trajectory are set as the polled node. The remaining nodes in the
small-scale network can transmit the self-perceived data to the other
Inquiry node by mean of near transmission. Large-scale networks are
clustered depending on the nodes being polled, and the remaining
nodes transmit the perceived data to the cluster heads to achieve AUV
node on the whole network data collection. In the case of question 2,
the repetition traversal method is used in most of existing literatures,
which repeated polling along the established trajectory, until the end
of the acquisition task and no data aggregation. Since the time interval
exists in AUV node polling, the data collected by AUV from the same
node at a time can form a set of sequences. Due to the uncertainty
of the underwater environment, the target events monitored by each
region are not the same, and the number of packets perceived and
collected is different. There are many packets of AUV to be delivered
by some interactive nodes, and the few packets are delivered by other
interactive nodes. Therefore, the uniform traversal of each node to
be interactive not only can reduce the efficiency of AUV polling,
but also increase the packet delay. Therefore, this paper designs the
online learning prediction model based on time Series Analysis, learns
the historical data of the pre-traversal of the AUV, and makes the
prediction of the number of interactive nodes in subsequent polling
and determines to carry out the interaction according to the size of the
predicted data node polling.

In this paper, the prediction polling is divided into two parts. The
first part is the generation of the prediction model and the other part is
the planning of the AUV polling trajectory. The number and location
of the interaction nodes are determined using the method specified in
literature.!! After the cluster, there is a total of N and expressed as S,
and the set of all the nodes is S={s,,s,,5;...5, } . The time interval of
the data collection is set to be 7', that is, AUV polling is done every
T time, and the data of the interactive node shall be collected. The
interactive node is used for tagging the first packet as T, within each
interval. x; means the amount of data collected by the s; node during
the j time. The number of packets generated by the s, node in the 7
time period is x;; .

Generation of prediction model

Since the model is used to predict historical data required to be
used, it is assumed that AUV is used in the whole network polling
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in the first ten times. The sliding window is used for the selection of
the historical data, and the size of the sliding window is initially set
to be 5. That is, using the historical data of 1 to 5 of time periods to
generate the prediction model, and slide five times and use 6 to 10 of
time periods to modify the model to determine the prediction model

Figure 3.
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Figure 2 Polling model schematic.
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Figure 3 Sliding window schematic.

For node N,, the amount of data packet collected in the first
five time intervals is X;;,X;,,X;3,%;4,X;5 - The predictive vector is
9,9=(61,62,6’3,64,95)T. And it is used to adjust the influence of
each component the historical data on the late data prediction. The
N, amount of data in the sixth time period can be predicted by the

following formula:

¥ =(@x +0x +0x +0x +0x )=0"x
i6 i 2% T UsTis T TaTia T UsTs (1)

General expression of the estimation function in the prediction
model is as follows:

hy(x,) =607 X

Since the length of the sliding window is set to be 5, the X/~ is
used to express the vector consisting of five window data up to x,_,
; J-1_ !
1€ X _(xjfﬁ >xj—4’xj73>xj—2 ’xj—l)

Due to the random generation of initial prediction vector 8 , the
gradient descent model is used to calibrate the predictive variables
in order to make the late prediction more accurate. The actual packet
of s; node collected at the 7; time period is x;, , and the prediction
error is:
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The error function of J;(#) can be used to describe the pros and
cons of the estimation function of 4y (x;) . The expression of the error
function is:

J| (0) = %(hg(xj)_xj)2 _ %(QTX./—I_xj)Z 3)

In order to minimize the value of the error function to get minJ,
, the location where the gradient of the function decreases most fast,
that is, the partial derivative of the function can be expressed as:

0 o1 2
@J(é’) = %E(hg(xj)—xj)
:%%(efxf‘l—xj )2 )

:(HTXf'l—x ; )2X(f‘1)

And then the prediction vector of & is updated and the vector @
is reduced in the direction of the smallest gradient. The updated &'
can be expressed as:

0=0-a % J(0)
_ _ (5)
=0-a@ xV" - x yxv

Where o refers to step size, i.e. the variable quantity is changed
with the direction of gradient reduction each time. As the gradient is
directional, for vector of € , a gradient direction can be solved for
each component, so that a whole direction can be solved. At the time
of the change, the function is changed towards the direction of the
most down to reach a minimum point, which is to ensure the minimum
error. It can be described in a simpler mathematical language, namely:

0

2
00,

V= . (6)
oy
20,

0=0-aV ,J )

Wherein V refers to gradient. When J is equal to 6 to 10, five
verifications can be made separately to the /,(x;) to obtain a more
effective predictive value, which can be used to predict the data packet
that may be generated by the late interactive nodes, so as to plan the
reasonable polling trajectory of AUV, and realize the maximization of
data collection efficiency and minimize the delay.

Planning of AUV polling trajectory

Through the prediction model in the section 3.2, it is possible
to effectively estimate the number of packets aggregated by each
interactive node in the next period of 7. According to assumption 3,
the sensor node has a certain storage capacity and the value is set to
be s; , when the amount of data generated by s; node in the current
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period of T time is few, the point is polled by AUV and the harvest is
low, which increases the network delay.

The steps of AUV polling trajectory planning strategy proposed in
this section are as follows:

Step 1: the prediction model is used to estimate the amount of data
packets generated by two consecutive periods of 7 for each interactive
node. Determine if the node storage threshold of C,; is exceeded.

Step 2: if it is predicted that the sum of data packets volumes
generated by interaction node of s; during the two time intervals of T
is over the storage threshold, it indicates that the AUV must poll the
node; otherwise it will cause packet loss. The node of s; is included
in the path planning considerations.

Step 3: if it is predicted that the sum of data packets volumes generated
by interaction node of s; during the two time intervals of T is not over
the storage threshold, it is not necessary to traverse the node. The node
will not be considered in the path planning.

Step 4: make statistics of the polling nodes, and develop a reasonable
planning route according to the location of each node.

Step 5: after traversing the selected node, the estimated function is
continually calibrated using the new round of data collected.

Step 6: if the node of s; has not been included in the path plan after
the prediction for twice, it will be direct traversal at the third time
without predicting (Figure 4).

Estimation of amount of data
packet of each interactive node in
two consecutive 7 times

v
The node S; is
incorporated into the
polling trajectory
planning to determine the
AUV polling trajectory

Waiting for the next 7
time to predict

End

Figure 4 AUV polling trajectory planning flow chart.

Simulation experiment

In order to validate the versatility and validity of the model, the
model is applied to the representative AAEERP!* horizontal polling
architecture, and 4 groups of experiments are designed with its original
model for comparison from sensor node energy consumption, network
throughput, packet transmission rate, end-to-end delay design:

Copyright:
©2017 Qili ecal. 158

a) Energy consumption: during the network monitoring, the total
amount of energy consumed by all sensor nodes is mainly for
data transmission and reception. The energy consumption unit
is Joule (J).

b) Throughput: refers to the amount of data transferred from sender
to receiver. The network throughput has directly affects on the
number of nodes in the network for data transmission and the
duration of that number. The unit of throughput is bit.

¢) Packetdelivery ratio: refers to the ratio of data packet successfully
transmitted to the water gateway by AUV to the total amount of
data packet generated by the network.

d) End-to-end delay: refers to the total time that the data packet is
transmitted to the water gateway. The unit is sec (s).

According to the experimental parameters of the horizontal polling
architecture AAEERP,™ the compared parameters of the simulation
experiment are as follows: the underwater sensor nodes and AUV are
deployed in the 1500m * 2000m area. A different number of sensor
nodes are deployed to demonstrate the utility of the data collection
algorithm in the underwater acoustic sensor networks of different
sizes. It is assumed that UWSNSs have different numbers of sensor
nodes of 18, 30, 42, 54 and 64; the sensor node transmission range is
250m, and the initial energy is 70 joules and the size of each packet is
70 bytes. It is assumed that no collision exists between the underwater
communication channels and the interference effects between the
channels are ignored. The specific simulation parameters are as shown
in Table 1. Considering the randomness of the underwater target
monitoring event, the feasibility of the RCAP is verified firstly.

Table | Horizontal polling experimental parameters

Parameters Values
Monitoring range 2000m*1500m
Number of nodes 18,30,42,54,64
Initial energy of node 70)
Data collection factor 0.6
Size of data packet 70bytes
Node transmission range 250m
Number of AUVs |
Experiment |: Feasibility verification of reliable

collection algorithm based on AUV with prediction

The error rate of the data collection algorithm is based on the
distribution of various target events, such as linear distribution,
normal distribution and Poisson distribution. The experimental results
are shown in Figure 5. The error rate of the data transmission is
predicted in the case of various target events with the increase of the
size of the network. For the target event of the linear distribution (the
distribution of the event is subject to the AR model), the error rate
of the prediction algorithm is kept at a low level, and the larger the
network size is, the lower the predicted error rate is. This is because
the time series analysis used in this paper is based on historical data
to conduct iterative prediction, and it is a better trend forecast for
the linear distribution. When the event in the network subjects to the
normal distribution, the error rate of the algorithm is higher than that
of the forecasting algorithm, but it tends to be stable with the increase
of the network scale. Although it is not as accurate as the prediction
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of linear distribution events, as a whole, the prediction of events in
large-scale networks can be less than 30%, and the trend is convergent
and has a certain of operability. For the Poisson distribution event,
this paper predicts that the effect of the algorithm fluctuates greatly,
the average error rate is about 50%, and the trend diverges and the
operability is not strong. To this end, the simulation experiment of
data collection algorithm is carried out under the premise of linear
distribution and normal distribution of target events. The experiments
numbered from 2 to 5 are the comparison of energy consumption,
throughput, transmission rate and time delay for the AAEERP
horizontal polling architecture.

: : ; ' : ¢ [—e— AR Madel
[N
st F'uls.sun

Emor rate

0 i i i i ; i -
10 .1 30 40 50 ED 70 B0 a0 100
Mumber of nades n GN

Figure 5 Error rate comparison of predictive algorithms in different event
distribution.

Experiment 2: Comparison of network energy
consumption

AAEERP algorithm and the algorithms specified in this paper are
used for data transmission under the circumstances of different event
distribution, and the total energy consumption of the entire network is
calculated. The data results are shown in Figure 6. It can be seen from
Figure 6 that the RCAP (AR) prediction algorithm is more accurate
and the energy consumption is lower for the target event with linear
distribution. Compared with the AAEERP algorithm which follows
the elliptical motion, the AUV trajectory designed in this paper is
more flexible and the number of unnecessary polling is reduced to
effectively improve the efficiency of data collection. In case of the
target event of normal distribution, since RCAP (normal) prediction
effect is relatively poor, compared to linear prediction, the energy
consumption is greater.

Experiment 3:Throughput comparison

AAEERP algorithm and the algorithms specified in this paper are
used for data transmission under the circumstances of different event
distribution, and the total amount of the data packet transmitted from
source mode to destination node is calculated. The data results are
shown in Figure 7. Figure 7 shows the throughput of each algorithm.
It can be seen that under the target event of linear distribution, the
RCAP (AR) prediction algorithm is accurate, the data transmission
efficiency is high, the throughput is increased with the increase of the
network scale, and the gain is higher. For the AAEERP algorithm, the
network throughput is at the middle level and tends to be stable and
the rising space is small. For the target event with normal distribution,
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the RCAP (normal) prediction algorithm has a small increase in
throughput, but the network throughput rises and the rising trend is
obvious subsequently.

1900 : T T
—&— AAEERP E : :

P —3—RCAP with AR : : 1
— H :

1600 . HC.*?\F' with nomal ; ] : SN,

Energy consumplaont)

|00 { | 1 i 1 F I 1 i
15 2 5 1] 38 40 45 0 55 B0 B5
Murnber of nodes

Figure 6 Comparison diagram of energy consumption.
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Murnber of nodes

Figure 7 Comparison diagram of throughput.

Experiment 4: Comparison of data packet delivery
ratio

AAEERP algorithm and the algorithms specified in this paper
are used for data delivery under the circumstances of different event
distribution, and the ratio of the data volume successfully delivered
to the water gateway to the data volume actually generated in the
network is calculated. The data statistics results are shown in Figure
8. It can be seen from Figure 8 that the data delivery ratio obtained
by the RCAP (AR) prediction algorithm is always higher and the
reduction ratio is slower for the target event with linear distribution.
This is because when the node used for interacting with the AUV is
polled, the algorithm can change the polling trajectory in time, while
the AAEERP algorithm still moves in accordance with the elliptical
trajectory, increasing the packet loss rate. The larger the scale of
the network, the easier the change of the interaction node, and the
difference in the transmission efficiency between the AAEERP
algorithm and this algorithm will be larger. It further shows the
usability of this algorithm in large-scale networks.
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Experiment 5:Transmission delay comparison

AAEERP algorithm and the algorithms specified in this paper
are used for data delivery under the circumstances of different event
distribution, and the total amount of the data packet transmitted from
source mode to water surface gateway is calculated. The data results
are shown in Figure 9. Figure 9 shows the end-to-end delay of the
AEERP and RCAP algorithms. In the AUV auxiliary data collection
algorithm, the end-to-end delay depends primarily on the round-trip
time and speed of the AUV. The AUV polling trajectory is fixed by
AEERP algorithm, the round-trip time and speed are relatively fixed,
and the overall delay tends to be at a moderate level. And the RCAP
(AR) prediction algorithm makes the track of AUV change with the
amount of data in the network, and the number of AUV polling is
increased with the number of packets generated by the interaction
node. On the contrary, for some nodes with few data packets, although
the efficiency of AUV data collection is greatly enhanced due to
fewer interaction numbers, the data stored by it will have to wait for
a long time to be collected and delivered by AUV for the data packet
generation node, which increases the network end-to-end delay to a
certain extent.
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Conclusion and expectation

In the current underwater acoustic sensor networks, the use of
AUV polling to collect data has become an effective way to provide
reliable transmission of data and extend the life cycle of the network.
In this paper, a novel underwater polling method is proposed, namely
RCAP (Reliable Collection based on AUV with Prediction). The
AUV trajectory and its interaction time with each cluster head are
scientifically developed, and the maximum number of propagation
data and the minimization of the network delay are realized. The
contributions of this paper are as follows:

a. The online prediction model for AUV polling is designed.

b. The effectiveness of RCAP is discussed under different
distributions of underwater target events.

c. Compared with AEERP, it is verified that RCAP has certain
advantages in network energy consumption, throughput and
packet transmission rate, and has certain promotion value.
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