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Introduction
Mass transfer is widely used in chemical engineering problems. 

It is used in reaction separations engineering, reaction, heat transfer, 
and many other sub-disciplines of chemical engineering. Usually, the 
difference in chemical potential is the driving force mass transfer. 
For single-phase systems, this is usually converted to uniform 
concentration throughout the phase, while for multiphase systems, 
chemical species often prefers a phase to others and reaches a uniform 
chemical potential. These mass transfer coefficients are usually 
published in terms of dimensionless numbers including Reynolds 
numbers, Sherwood numbers, and Schmidt numbers. The transport of 
mass in a phase depends directly on the gradient of the concentration 
of the transport species at that stage.

The mass may be transferred from one phase to another, and 
this process is called interphase mass transfer.1-3 Based on a theory 
of mass transfer, the mass transfer rate in the absence of the bulk 
flow directly proportional to the propulsion is expressed as a molar 
concentration difference.3 In the two-film theory, the kc is directly 
proportional to D and inversely proportional to the thickness of the 
film. In the theory of film propagation, the kc is a complex function 
of the D, the thickness of the film. In many cases, the kc value cannot 
be calculated from the basics, although how kc varies according to 
the operating conditions.1-6 Theoretical expressions for D in a mixture 
of low-density gases as a function of the molecular properties of the 
system by Sutherland,7 Jeans8 and Chapman & Cowling9 based on 
the kinetic theory of gases. Diffusivities of vapors are determined by 

Winkel Mann10 in which liquid is allowed to evaporate in a vertical 
glass tube. The diffusion D is not known to transmit another gas and 
the experimental determination is not practical. It is necessary to 
use one of the many predictable methods. A normally used method 
proposed by Gilliland11 and Fuller.12 Different experimental methods 
for determining the molecular diffusion coefficient. The measurement 
method is usually included microscopy,13,14 total internal reflection 
fluorescence (TIRF) spectroscopy 15,16 and Interferometry.17-19 

Average balance interface model for equilibrium was developed by 
Hodgson20 and then improved by Deng.21The convective mass transfer 
coefficient in the equilibrium interface model introduced by Deng.21,22 

To determine the mass transfer coefficient convection (hm), the 
empirical equations are widely used based on the analytical transfer 
of heat and mass.21 Mass transfer coefficient (kC) depending on the 
medium characteristics such as roughness of the surface, mass transfer 
equipment, shape, the surface temperature, size and profile of fluid 
flow.23 Different equations in literature have been used to predict mass 
transfer parameters such as various Sherwood numbers. The reflection 
of the process parameters experimental determination is important. 
A novel method for these parameters determination is to use the 
experimental time-mass concentration data. Analytical solutions of 
regular shapes such as an infinite cylinder, infinite slab, and sphere 
with initial and boundary conditions suitable to the experimental data 
obtained from food material itself may be used to experimentally 
determine these parameters.23 Therefore, the objective of this study is 
to explain the methodologies to use analytical solutions of regularly 
shaped geometries with the experimentally obtained data to determine 
the mass transfer parameters.
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Abstract

Mass transfer coefficient and diffusion coefficient are important for modeling of food 
processing operations. There have been many methods to determine mass diffusivity in 
the during mass transfer phenomena. Drying methods, simplified methods, simulation 
method, numerical methods, and regular regime method are procedures to determine 
this parameter. Experimental determination of these parameters would be valuable. 
This article offers an approach method for estimation of mass transfer parameters 
(diffusion coefficient (D) and mass transfer coefficient (kc)) using analytical 
solutions and experimental data for regular geometric shapes such as infinite slab, 
infinite cylinder, and sphere. Analytical solutions have a broad use in experimentally 
determining these parameters. Here, the method of Finite Integral Transform (FIT) 
was used for solutions of governing differential equations. The concentration ratio vs. 
time of regular shapes was recorded to determine both the mass transfer coefficient 
and diffusion coefficient. In this study, determination steps of diffusion coefficient 
during the mass transfer when this parameter is fixed or variable, also been described. 
The results showed that diffusion coefficients of the sodium tripolyphosphate 
solutions (2% w/v) in slab shaped before and after the barrier formation on the surface 
of meat samples was completed is and using the method presented in this paper. In this 
research, the mass transfer coefficient was also being determined using the analytical 
solutions when the diffusivity of substance is known.
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Mathematical modeling

Governing differential equations with initial and boundary 
condition and solutions for infinite geometries are given by the 
following equation:

1 1n
n

x x t
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x

x D

∂ ∂ ∂
=

∂ ∂ ∂

 
 
 

 	                                                          (1)

In the above equation, C is mass concentration; x is the distance 
from the center of substance; n is a characteristic number (n = 0 for 
infinitely slab, n = 1 for infinitely cylinder, and n=2 for a sphere); and 
D is diffusivity coefficient (m2/s). Solutions for Eq. (1), for initial and 
boundary conditions of central symmetry and convection boundary of 
the surface, are given for these geometries as follows.24,25

Solution by the method of finite integral transform 

A finite integer transform method (FIT) involves an operator that 
converts the main equation to a simpler domain. The solution in the 
new domain will be quite primitive. However, to be of practical value, 
it must be converted into the original space. The operation is formed 
for this reverse transformation, along with the main operator, which 
we call a pair of integral transforms.26 to demonstrate the development 
of the integral transform pair in a practical way, consider the Fick’s 
mass transfer problem with the regular geometry object. We see the 
use of the transfer technique as a temporary problem of mass transfer 
in a slab, cylinder or spherical as shown below:
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According to the initial and boundary conditions: 
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In the Eq. (2) n is a shape factor of the domain. It takes a value of 
0, 1 or 2 for a slab, cylinder or spherical coordinates. Note that the 
boundary conditions (5) are heterogeneous. 

To provide homogeneous boundary conditions, we need to solve 
the steady-state problem:

1
0n

n

C Cx
x xx

∂ ∂ 
= ∂ ∂

 			                                (6)

 
According to:

At x = 0 	  0
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A solution of Eq. (6) is simply. The concentration is equal to: 

C C∞=  					                    (9)

Therefore, θ is a new dependent variable. In that sense,

C Cθ ∞= −  				                                    (10)

Substitution of Eq. (10) into Eq. (2), produces the following 
equations for θ with homogeneous boundary conditions:
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This new set of equations can now be easily solved by a finite 
integral transform method.

The following integral transform is derived as: 
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Where the kernel of the transform is obtained from the following 
associated Eigen problem:  
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The solution for θ is easily seen: 

21, exp 21 ,

n n
n n

n n

D K
i K t

n K KL
θ θ λ∑= −

−

 
 
 

                            (19)
 

And therefore: 

2
21

1, exp
,

n
i n ni n

D Kn
K t

L Kn Kn

θ
θ λ

θ −
∑= −

 
 
 

                          (20)

For three different shapes, the expressions for Kn (x), λn, and are:

Slab
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 Cylinder
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Sphere 
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The dimensionless concentration ratio for non-finite regular 
geometries is limited to:

Infinitely slab
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Where 
2

Dt
Fo

ξ
= is Fourier number (ξ is L, thickness of half an 

infinite slab and R, the radius of an infinite cylinder or a sphere); D 
is the diffusivity coefficient, and the λn are the roots of the following 
equations (Eqs. (36)- (38)) for infinitely slab, infinitely cylinder and 
sphere, respectively:25
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Where cK
Bi

D
ξ

= is Biot number (Bi) and Jo and J1 are the 0th 

and 1st order of the first kind of Bessel functions, respectively. The 
mass transfer is obtained by integrating o Eqs. (33) - (35) for the total 
volume due to the experimental results of mass transfer for the total 
volume. The results of these integrations for the infinite slab, infinite 
cylinder, and sphere are obtained by the Eqs. (39) to (41), respectively.
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As can be seen in Eqs. (39) – (41), it is important to know how 
many terms of infinite series solutions are necessary to obtain the 
correct solution. This is a general knowledge that the use of the first 
term is sufficient if the Fo number is more than 0.2. In this case, the 
concentration ratio is then linear after that time. This first approach 
may easily be used to determine this parameter with the value of the 
mass transfer coefficient (kc).25

Let’s assume that the sodium tripolyphosphates concentration 
were determined in red meat in an experiment for the regular 
geometries such as infinitely slab, infinitely cylinder and sphere while 
meat samples were immersed in a solution for a given period of time. 
It is very easy to determine D as long as the available experimental 
data when the Fourier number is greater than 0.2. In the following 
experiment, we measuring the concentration of STP in the beef 
sample with flat plate shape for determination of constant diffusion 
coefficient using natural logarithm concentration ratio of STP in the 
beef vs. time.

Experiments
Analysis of Sodium tripolyphosphate in meat sample with a flat 

plate shape Sodium tripolyphosphate solution and beef sample were 
used in this experiment. Therefore, Sodium tripolyphosphate solution 
must be made before testing begins. Tripolyphosphate solution was 
prepared using distilled water at 65-70°C. in the various concentrations. 
Different concentrations of sodium tripolyphosphate solution such 
as 4%, 6% and 8% (w/v) were used in this experiment. Also, the 
purchased meat is cut into 25 25 25× × mm pieces and used for 
different stages of testing. It should be noted that the frozen specimens 
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should be melted before testing at room temperature (25-25°C). Beef 
samples were also immersed in distilled water as a control group. 
After the preparation of the raw material, the test began several times. 
To begin each experiment, after cooling the STP solution with desired 
concentration to ambient temperature, beef samples were immersed 
in it. The ratio of volume to weight of solutions to beef samples is 
approximately 5:1(v/w). Then, phosphate level changes in both beef 
samples and solutions versus time were determined using a modified 
spectrophotometer ammonium molybdate method. In this experiment, 
every 10 minutes after immersion, each sample is removed from the 
solution and the sodium tripolyphosphate concentration is measured. 
It should be noted that any sample taken out of the solution before 
measuring the amount of STP in it, first, after leaving their surfaces 
were washed and dried with a tissue and then they are crushed well 
in the blender. Five grams of crushed sample was homogeneous in 
40 ml of water and allowed to be stored at 4°C for 30 minutes. The 
homogenous are filtered with a Watten filter paper and then filtered 
with distilled water to a volume of 50 ml. To do this, a vacuum pump 
is used. Then, to 5 ml of the filtered sample, 5 ml TAC 10% aqueous 
solution was added and then centrifuged at 40,000 rpm for 5 minutes. 
After the supernatant was completed to 25 ml, the pH of the solution 
was adjusted to 8 using concentrated ammonia solution. Then remove 
2 ml of solution and 10 ml combined reagent was added. The volume 
of this solution reaches 50 ml by adding distilled water. Similarly, 
at each sampling time, solutions STP phosphate levels were also 
evaluated. After removing the beef samples, the solution is diluted. 
The pH of 4 ml of diluted solution is adjusted to 8 and then, 10 ml 
combined reagent was added, and the resulting solution volume 
is added to distilled water to 50 ml. The dilution process causes 
phosphate levels within a measurable range, and by hydrolysis of 
phosphates into orthophosphates. These mixtures are placed inside the 
incubator for 10 minutes at a temperature of 37oC. In this experiment, 
the absorbance was read at 690 nm using UV/VIS spectrophotometry. 
Also, in order to calculate the concentration of phosphate, the 
necessary curve was first prepared by standard STP solutions, and then 
phosphate concentration of samples in term of orthophosphates was 
calculated using this curve. All of these experiments were repeated 3 
times.

Results and discussion
Determination of constant diffusion coefficient value

Suppose that the change in concentration was recorded in a 
specific location of regular geometries such as an infinite slab, infinite 
cylindrical shape and spherical object in a medium to determine the 
diffusion coefficient (D) and mass transfer coefficient (kc). Then, the 
roots of Eqs. (36)-(38) would be (π/2, 3π/2, 5π/2,….) for an infinite 
slab, (2.4048, 5.5200, 8.6537,….) for an infinite cylinder and (π, 2π, 
3π,….) for a sphere, respectively, when the Bi is infinite. Due to the 

fact that the concentration ratio v
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∞

 −
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becomes linear when the 

Fourier number greater than 0.2, the first term of Eqs. (39) to (41), 
are then used to characterize the linear change in that regions.25 When 
the natural logarithm of both sides of Eqs. (39) to (41) are taken with 
the first term approximation (n =1), Eqs. (42) to (44) are obtained for 
infinite slab (λ1 = π/2), infinite cylinder (λ1 = 2.4048) and sphere (λ1 
= π), respectively:
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Where A1 in these equations is calculated from the following 
expressions: 

For infinite slab
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For infinite cylinder 
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And for a sphere 
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As can be seen in Eqs. (42) to (44), slope m of the concentration 
ratio vs. time curve for the infinite slab, infinite cylinder, and sphere is 
shown in the following equations:

For infinite slab 
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For infinite cylinder 
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And for a sphere 
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Then, with the known slope and thickness of infinite slab or radius 
of the infinite cylindrical or sphere materials, the diffusion coefficient 
(D) value may be determined. As we know, this method does not 
need to know the location where test data is recorded, regardless of 
location.27

Diffusion coefficients for the STPs diffusing into the beef samples 
may easily be determined using these results in both stages before 
and after the diffusion. After the phosphate content change of the beef 
samples was experimentally determined, natural log of concentration 

ratio values ln
t
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was calculated and graphed versus 
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immersing time. Figure 1 & Figure 2 show this change with respect to 

the differences in values ln
t

i

C C

C C

∞

∞

−

−
 in the meat samples before and 

after the barrier formation was completed. Starting from this point, 
assuming the natural log of concentration changes after a certain time 
would be linear, diffusion coefficients may be easily determined with 
this approach that was applied to the experimental data before and 
after the barrier formation was completed. As can be seen in Eq. (42), 
the slope of the concentration ratio versus time directly gives the 
diffusion coefficient value with the known (Eq. (36). The assumption 
of an infinite mass transfer coefficient (k) between the surface and the 
solution interphase was a general approach for this kind of problems. 
Then, the constant diffusion coefficient of STP in beef with slab 
shaped may be determined using the following equation:

2

2 2
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slop slop
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λ π
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Table 1 shows the values of the diffusion coefficient determined 
according to the concentration of STP solutions. As observed in these 
results, they increased with increasing concentration of STPs in the 
early stages of immersing, before the barrier formation was completed. 
Secondly, after completing the barrier, Diffusion coefficient values 
have not changed. Minor variations in numerical values may be due 
to experimental errors.

Figure 1 The increases in the sodium tripolyphosphate (STP) concentration 
ratio of the meat samples dipped in STP solutions before the barrier formation 
was completed.

Figure 2 The increases in the sodium tripolyphosphate (STP) concentration 
ratio of the meat samples dipped in STP solutions after the barrier formation 
was completed.

Table 1 Diffusion coefficients of the sodium tripolyphosphate solutions for 
slab shaped before and after the barrier formation on the surface of meat 
samples was completed (Fo > 0.2)

Concentration 
of  STP 
solutions %

Diffusion coefficient 
(D) before barrier 
formation was 
completed m2/s

Diffusion coefficient 
(D) after barrier 
formation was 
completed m2/s

2 1.81×10-9 5.40×10-9

4 1.99×10-9 5.48×10-9

6 4.00×10-9 5.36×10-9

Determination of average diffusion coefficient	  

As described above, determining the of diffusion coefficients was 
based on the assumption that Fourier number is more than 0.2 and 
the diffusion coefficient of the STPs to be constant through the full 
immersing process. When the determined diffusion coefficients were 
used to determine the Fourier number, it is clear that this assumption is 
not correct. For example, if a 20 mm infinite slab shaped beef sample 
is immersed in a 2% STP solution, it should take more than 3 hours for 
this assumption. Although it was thought that after a certain time of 
immersion, the phenomena of propagation changed. Clearly, the rate 
of release of STPs and orthophosphates changes through the entire 
process, leading to a variable diffusion coefficient. The diffusion 
coefficient values also seemed to be high. When this value was 
applied to the diffusion equations, the amount of penetration STPs in 
the meat sample was also determined to be high. According to these 
problems, another method should be used to determine the minimum 
mean diffusion coefficient for describing the STP diffusion process. 
In order to determine the mean diffusion coefficients, the least squares 
method was used for the experimental data to determine these mean 
values as the follows:

The results of integration for infinitely slab, infinitely cylinder, and 
sphere using of Eqs. (33) - (35) through the total volume would be 
obtained by Eqs. (39) to (41), respectively as the following: 

For infinitely slab
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In the above equation, A values in the above equation are given 
by Eq. (52)

 
for n= 1,2,…….	
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For infinitely cylindrical shape 
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Where A values in the Eq. (51) are given by Eq. (54):
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For spherical shape
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Where A values in the Eq. (55) are given by Eq. (56):
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In Eqs. (51), (53) and (55), the diffusion coefficient value (D) 
is only unknown assuming kc of the medium, hence the Bi and the 
λ values, is known. In this state, the diffusivity (D), the value is 
determined by solving the above equations. Every other numerical 
method such as Newton-Raphson may be used to solve this equation. 
when the Newton-Raphson technique is used, the iterative solution of 
the Eqs. (57)-(63) give the result of D value for regular geometries:

For infinitely slab
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For cylindrical shape
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For spherical shape
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Then, the new diffusion coefficient for any shape is calculated by 
the following equation:
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( )1 '

n
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D D
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= −  				                     (63)

In this way, only knowing the concentration ratio at any time 
will be enough to determine the diffusion coefficient value, instead 
of using a set of experimental data. Constant D value assumption is 
checked with this approach using testing data obtained at different 
times. Table 2 shows the average diffusion coefficients of the sodium 
tripolyphosphate solutions including 2%, 4% and 6%, (w/v) before 
and after the barrier formation on the surface of meat samples was 
completed. As can be seen, the average diffusion coefficient values 
were found again to increase with increasing STP concentration. Using 
these values, the diffused amount of STPs into the meat samples may 
be easily determined. 

Table 2 Average diffusion coefficients of the sodium tripolyphosphate 
solutions for slab shaped before and after the barrier formation on the surface 
of meat samples was completed (Fo> 0.2)

Concentration 
of  STP 
solutions %

Diffusion coefficient 
(D) before barrier 
formation was 
completed m2/s

Diffusion coefficient (D) 
after barrier formation 
was completed m2/s

2 1.76×10-11 47.22×10-11

4 5.57×10-11 87.50×10-11

6 31.82×10-11 105.10×10-11

Determination of variable diffusion coefficient value

Unal27 published variable diffusion coefficient values for diffusion 
of sodium tripolyphosphate in red meats. The variable diffusion 
coefficient may be explained using the above method using Eqs. (57) 
to (63).

If changes in the entire process continue, it may be simpler to 
determine an average value for describing the total process, or it should 
use the numerical finite difference to consider changes. Therefore, to 
minimize the sum of squares (S), the difference between experimental 
data and the results of analytical solutions can be used to minimize the 
equation Eq. (64) as follows:
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−
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In Eq. (64), n is the number of experimentally obtained data, and E 
is the testing data. The diffusivity value is determined by minimizing 
S. In the other words should be 0. 

Deriving from Eq. (64) relative to D, then the following equations 
are obtained: 
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From equation (66), this can appear to ∂S/∂D to be 0: 
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 (67)

And the Eq. (67) can be solved numerically for the value of the 
diffusion coefficient using the Newton-Raphson method or any other 
solving method.

Constant mass transfer coefficient determination

Mass transfer coefficient can also be determined using the 
analytical solutions. Therefore, the diffusivity of substance must be 

known. Then, λ1 is determined 

1
2

1

m

D
λ ξ= ⋅ −

 
 
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using the slope 

(m) of the concentration ratio vs time curve. And it is then used to 
determine the Bi number and thus kc. However, this technique is easy 
to use. The general approach is to assume in the literature infinity 
mass transfer coefficient (kc) and then to determine the diffusivity 
value (D). Nevertheless, can be used the analogy of Chilton-Colburn 
for determination of the kc and D using heat transfer coefficient when 
a simultaneous heat and mass transfer is occurring such as drying 
process: 
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 				                (68)

Where kc is mass transfer coefficient, h is the heat transfer 
coefficient, ρ and Cp are density and heat capacity of the heating 
medium, respectively, Pr is the Prandtl and Sc are the Schmidt number. 
Essentially, Eqs. (69) to (74) is used to determination of diffusivity 
value by knowing kc and experimental data. Then, determination of 
λ value (Eqs. (69), (71) and (73)) and therefore the D value through 
the slope of the concentration ratio vs. time curve (Eqs. (70), (72) and 
(74)).
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Determining the mass transfer coefficient using a diffusion 
coefficient is not a simple solution. Therefore, it is assumed that the 
mass transfer coefficient is known, and then the diffusion coefficient 
is calculated using the following steps for each of regular geometries 
such as infinitely slab, infinitely cylinder, and sphere: Determination 
mass transfer coefficient value from Eq. (68), Determination λ1 value 
from Eqs. (69), (71) and (73) for infinitely slab, infinitely cylinder, and 
sphere, respectively, Determination D value from Eqs. (70), (72) and 
(74) for infinitely slab, infinitely cylinder, and sphere, respectively.

Conclusion
Various methods in literature are described in detail for 

experimental determining of D and kc. because these approaches 
require experimental data from interesting materials with analytical 
solutions. These methods are more advantageous than using preferred 
methods such as the lumped system approach or use of empirical 
equations to determine these mass transfer parameters. As seen in these 
approaches, it is necessary that one of the parameters is known so that 
another parameter can be determined. Therefore, it is still important 
to develop a procedure to determine both parameters simultaneously. 

In this study, D and kc of regular shapes were estimated using 
the method of Finite Integral Transform and the experimental data. 
Diffusion coefficients for the STPs diffusing into the slab-shaped of 
beef samples may easily be determined using these results before 
and after the diffusion. Determination of the diffusion coefficient 
for STPs with the mass transfer coefficient at different stages of the 
immersion process will be useful for studies on further diffusion and 
optimization. On the other hand, knowing the degree of penetration of 
STPs in samples under different conditions leads to useful results in 
STP in meat. In addition to these, the diffusion coefficient was known 
to be strongly affected by temperature. In this study, all experiments 
were accomplished at room temperature (20oC). A small increase in 
temperature may affect the intensity of the STP release. Therefore, 
research on the effects of temperature on the release of STP may also 
be necessary for further studies on this subject. 

Highlights 
a)	 New approach for determination of mass transfer parameters.

b)	 Using Finite Integral Transform for solutions of governing 
equations.

c)	 Prediction of constant and variable diffusion coefficient (D).

d)	 Using concentration ratio vs. time for determination mass 
transfer coefficient and D.

e)	 Determination of mass transfer coefficient, when the diffusivity 
of substance is known and vice versa

Nomenclature
A: Constant 

C: Mass concentration

Ci: Initial mass concentration

C∞: Medium mass concentration

Cp: Specific heat, J/kg-K
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D: Diffusion coefficient, m2/s

E: Experimental data 

h: Heat transfer coefficient, W/m2K 

Jo, J1: The first kind 0th and 1st order Bessel functions 

k: Thermal conductivity, W/m K

kc: Mass transfer coefficient, m/s

L: Half-thickness for an infinite slab, m

m: Slopes of concentration ratio vs. time curves, l/s

µ: Dynamic viscosity, kg/ms

θ: Dimensionless mass concentration ratio

θv: Volume average dimensionless mass concentration ratio

r, x: Distance from the center, m

R: Radius of an infinite cylinder or a sphere, m

ρ: Density, kg/m3

ξ: Characteristic length, m

λ: Root of Eqs. (36)-(38)

ν: kinematic viscosity, m2/s
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