Submit manuscript...
International Journal of
eISSN: 2470-9980

Vaccines & Vaccination

Research Article Volume 7 Issue 1

The BFP (Benford-Fibonacci-Perez) method validates the consistency of COVID-19 epidemiological data in France and Italy

Jean Claude Perez

Department of Maths & Computer Science, Retired (IBM Artificial Intelligence European Lab), France

Correspondence:

Received: December 22, 2022 | Published: December 30, 2022

Citation: Citation: Perez JC. The BFP (Benford-Fibonacci-Perez) method validates the consistency of COVID-19 epidemiological data in France and Italy. Int J Vaccines Vaccin. 2022;7(1):18–22. DOI: 10.15406/ijvv.2022.07.00115

Download PDF

Abstract

The Benford method can be used to detect manipulation of epidemiological or trial data during the validation of new drugs. We extend here the Benford method after having detected particular properties for the Fibonacci values 1, 2, 3, 5 and 8 of the first decimal of 10 runs of official epidemiological data published in France and Italy (positive cases, intensive care, and deaths) for the periods of March 1 to May 30, 2020 and 2021, each with 91 raw data. This new method – called “BFP” for Benford-Fibonacci-Perez - is positive in all 10 cases (i.e. 910 values) with an average of favorable cases close to 80%, which, in our opinion, would validate the reliability of these basic data.

Keywords: Benford’s law, DNA, SARS-CoV2, mRNA, Benford-Fibonacci-Perez

Introduction

On the one hand, there is Benford's law (http://www.fusioninvesting.com/2009/11/benfords-law-and-fibonacci-numbers/) which stipulates that the majority of series of measurements more or less linked to natural or biological phenomena are confirmed, if they are now, to this law which is defined as follows: In (http://www.fusioninvesting.com/2009/11/benfords-law-and-fibonacci-numbers/)   we note: « Benford’s law, also called the first-digit law, states that in lists of numbers from many real-life sources of data, the leading digit is distributed in a specific, non-uniform way. According to this law, the first digit is 1 almost one third of the time, and larger digits occur as the leading digit with lower and lower frequency, to the point where 9 as a first digit occurs less than one time in twenty.

This counter-intuitive result has been found to apply to a wide variety of data sets, like  electricity bills, street addresses, stock prices, population numbers, death rates, lengths of rivers, physical and biological (which are very common in nature).

It is named after physicist Franck Benford,who stated it in 1938, although it had been previously stated by Simon Newcomb in 1881.

Particularly, in epidemiology and health drugs trials, this law permets to validate accuracy and réalité of basic data ».

This law is used in various areas like stock exchange, social phenomena, epidemiology etc (Figure 1).1

Figure 1 Percentages of Benford's law.

This can therefore help detect fraud in scientific publications as well as unintentional errors in these datasets. Often, we present the Fibonacci sequence as an example of a distribution obeying my Benford law fairly well.

On the other hand, there is, precisely, this Fibonacci law

Well known in natural forms: nautilus spiral, sunflower flowers, pineapple, palm trees or pine cones, Fibonacci numbers also control the relative proportions of TCAG nucleotides in DNA: we had already demonstrated this 30years.2,3 More recently, we have shown that these same Fibonacci proportions of the genome of the mitochondria, the energy source of the human cell, are deteriorated by mutations associated with various cancers.4 We also demonstrate how these same Fibonacci proportions of DNA make it possible to distinguish a genome of a real bacterium from its attempt at a synthetic chimera.5

In the field of SARS-CoV2, its mRNA vaccines, and its multiple variants, we have demonstrated since the start of the COVID-19 pandemic how these Fibonacci numbers offered a new angle for the analysis of mRNA sequences and mutations of SARS-CoV2: a biomathematic point of view of the genome,6,7 mRNA vaccines or variants.8 or the last Indian variant "Delta" B.1.617.2.9

The paradox which is at the source of our method

On the one hand, Benford's law is often illustrated by its "good correlation" when applied to the Fibonacci sequence, which everyone knows is at the root of many forms of nature.

On the other hand, when we observe this same histogram, taken as proof of Benford's law by the primes, I note, on the contrary, that the (Fibonacci) numbers 1 2 3 5 and 8 differ in this histogram other numbers 4 6 7 and 9 (Figures 2&3, Table 1). It is this observation which will be at the root of our method, then illustrated by this article.

Figure 2 Percentages of Benford's law over the first 200 Fibonacci numbers.

Figure 3 Percentages of Benford's law over the first 500 Fibonacci numbers.

d

  %Théorique

%Observé

1

30.100

30.130

2

17.600

17.560

3

12.490

12.570

4

09.691

09.381

5

07.918

07.984

6

06.694

06.586

7

05.799

05.788

8

05.115

05.389

9

04.575

04.391

Table 1 Percentages of Benford's law over the first 500 Fibonacci numbers

What about the “BFP” method running on the firsts Fibonacci numbers? (Table 2). It seems that our “BFP” law is all the more clear that the Fibonacci numbers are small here 27 on the first 34=79.41%.

Fibonacci

BFP digit

1

1

1

1

2

2

3

3

5

5

8

8

13

1

21

2

34

3

55

5

89

1

144

1

233

2

377

3

610

6

987

9

1597

1

2584

2

4181

4

6765

6

10946

1

17711

1

28657

2

46368

4

75025

7

121393

1

196418

1

317811

3

514229

5

832040

6

1346269

1

2178309

2

3524578

3

5702887

5

Table 2 2 clusters partition of the 34 firsts Fibonacci numbers and BFP digits (Benford-Fibonacci-Perez)

Methods and data

Fibonacci numbers:

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 17711 28657 46368 75025 121393 196418 317811 514229 832040 1346269 2178309 3524578 5702887.

For any whole number in the list, consider only its decimal with the highest weight decimal.

Example

13 ==> 1

3398 ===> 3

4765 ===> 4

If the selected decimal digit belongs to fibonacci 1 2 3 5 8 do +1

Otherwise 4 6 7 9 0 do +0

We then calculate the % of positives/total.

Basic datas

Main data sources from: For France

https://www.data.gouv.fr/fr/datasets/donnees-hospitalieres-relatives-a-lepidemie-de-covid-19/

For Italy

https://www.sciencedirect.com/science/article/pii/S2352340920304200 (Tables 3&4).

Positive cases

Death

Intensive care

2020

2021

2020

2021

2020

2021

566

13114

12

246

140

2289

342

17083

11

343

166

2327

466

20884

27

347

229

2411

587

22865

28

339

295

2475

769

24036

41

297

351

2525

778

23641

49

307

462

2571

1247

20765

36

207

567

2605

1492

13902

133

318

650

2700

1797

19749

97

376

733

2756

977

22409

168

332

877

2827

2313

25673

196

373

1028

2859

2651

26824

189

380

1153

2914

2547

26062

250

317

1328

2982

3497

21315

175

264

1518

3082

3590

15267

368

354

1672

3157

3233

20396

349

502

1851

3256

3526

23059

345

431

2060

3317

4207

24935

475

423

2257

3333

5322

25735

427

386

2498

3364

5986

23832

627

401

2655

3387

6557

20159

793

300

2857

3448

5560

13846

651

386

3009

3510

4789

18765

601

551

3204

3546

5249

21267

743

460

3390

3588

5210

23798

683

460

3489

3620

6203

23987

712

457

3612

3628

5909

23839

919

380

3732

3635

5974

19611

889

297

3856

3679

5217

12916

756

417

3906

3721

4050

16017

812

529

3981

3716

4053

23904

837

467

4023

3710

4782

23649

727

501

4035

3681

4668

21932

760

481

4053

3704

4585

21261

766

376

4068

3714

4805

18025

681

326

3994

3703

4316

10680

525

296

3977

3737

3599

7767

636

421

3898

3743

3039

13708

604

627

3792

3683

3836

17221

542

487

3693

3663

4204

18938

610

718

3605

3603

3951

17567

570

344

3497

3588

4694

15746

619

331

3381

3585

4092

9789

431

358

3343

3593

3153

13447

566

476

3260

3526

2972

16168

602

469

3186

3490

2667

16974

578

380

3079

3417

3786

15943

525

429

2936

3366

3493

15370

575

310

2812

3340

3491

12694

482

251

2733

3311

3047

8864

433

316

2635

3244

2256

12074

454

390

2573

3151

2729

13844

534

364

2471

3076

3370

16050

437

360

2384

3021

2646

14761

464

342

2267

2979

3021

13817

420

322

2173

2894

2357

13158

415

217

2102

2862

2324

8444

260

301

2009

2849

1739

10404

333

373

1956

2748

2091

13385

382

344

1863

2711

2086

14320

323

288

1795

2640

1872

13446

285

263

1694

2583

1965

12965

269

226

1578

2522

1900

9148

474

144

1539

2524

1389

5948

174

256

1501

2490

1221

9116

195

305

1479

2423

1075

10585

236

267

1427

2368

1444

11807

369

258

1333

2308

1401

10554

274

207

1311

2253

1327

10176

243

224

1168

2211

1083

8292

194

139

1034

2192

802

5080

198

165

1027

2158

744

6946

251

179

999

2056

1402

7852

172

262

952

1992

888

8085

195

201

893

1893

992

7567

262

182

855

1860

789

6659

242

136

808

1805

875

5753

153

93

775

1779

675

3455

145

140

762

1754

451

4452

99

201

749

1689

813

5506

162

149

716

1643

665

5741

161

164

676

1544

642

5218

156

218

640

1469

652

4717

130

125

595

1430

669

3995

119

72

572

1410

531

2490

50

110

553

1382

300

3224

92

166

541

1323

397

3937

78

121

521

1278

584

4147

70

171

505

1206

593

3738

87

126

475

1142

516

3351

111

83

489

1095

416

2949

75

44

450

1061

Table 3 Italy: from 1 March to 30 May 2020 and 2021

Positive cases

Death

2020

2021

2020

2021

43

20412

0

114

23

20453

0

375

48

19786

1

410

34

21912

1

322

73

13157

0

278

138

2364

3

405

179

29327

2

196

103

23466

1

127

410

23706

9

358

286

23945

11

356

371

26255

3

264

497

17026

15

265

586

4135

13

290

770

38276

18

168

818

30555

12

132

923

30439

36

333

1198

30375

21

392

1070

33123

27

236

1377

20670

69

269

1846

4986

128

267

1595

46270

78

184

1847

38088

112

138

1529

37136

112

343

3794

37079

186

269

2410

39932

240

245

2895

24890

230

223

3866

5122

365

897

3748

52323

297

156

4611

43554

319

158

2491

39629

291

360

4341

38379

415

361

7500

38483

497

299

4784

24320

505

304

2066

3775

471

318

5209

8602

2003

185

4221

53843

1053

157

1850

39110

518

228

3881

35899

832

412

3737

37967

1417

433

3869

23785

540

331

4256

3728

1339

319

4333

46288

987

207

3104

34343

635

176

1595

30754

560

373

2669

31275

572

345

5483

32128

762

295

2621

20291

1438

297

2623

4515

753

302

385

39723

760

177

2558

30755

636

169

742

29142

395

446

2050

26869

544

381

2638

28363

531

313

1810

17221

544

283

1623

3476

516

331

1755

32465

389

166

1537

24812

368

174

404

21077

242

391

1160

20966

437

315

1025

22575

366

344

1601

3828

427

306

1055

3376

288

290

601

27245

218

164

736

20203

164

113

250

17478

135

279

534

15889

306

255

1050

17918

326

273

4176

3888

278

219

512

1562

177

206

598

23884

242

205

430

16618

80

86

65

15762

70

319

863

1571

262

202

977

17164

348

182

985

8576

81

160

213

2262

349

173

73

18820

130

100

1110

15432

88

81

963

13220

66

195

1027

11514

186

192

131

11986

124

169

761

4817

109

133

226

12572

83

121

101

11821

74

75

692

9704

43

70

689

1908

34

61

649

1749

64

178

587

12438

98

172

552

13704

66

141

316

11090

65

94

126

10007

52

95

Table 4 France: from 1 March to 30 May 2020 and 2021

Results and discussion

Basic results

Here is the expected result on the public data covid19 in France and in Italy between March 1 and May 30 in 2020 and in 2021. Then, having the RELIABILITY of these basic data, we will illustrate an example of application: bravais correlations pearson in France (data smoothed over 7 sliding days) on time between positive test and death.

Synthetic results: Test "BFP" method to validate SARS-CoV2 epidemiologic data.

Italy

Positive cases 2020: 65/91=71.4%

Death 2020: 53/91 =58.2%

Positive cases 2021: 80/91=87.9%

Death 2021: 71/91=78.02%

Intensive care 2020: 73/91=80.2%

Intensive care 2021:  91/91=100%

France

Positive cases 2020: 63/91=69.2%

Death 2020: 83/91 =91.2%

Positive cases 2021: 65/91=71.4%

Death 2021: 81/91 =89%

Average 725/910=79.67% for 10 batches with 91 cases each, then a total of 910 cases. It seems that “BFP” law is all the more clear that the Fibonacci numbers are small here 27 on the first 34=79.41%.  We notice that everything is > in 2021 than in 2020.

2020: 64 + 53 + 73 + 63 + 65=318/455=69.89%

2021: 80 + 71 + 91 + 83 + 81=406/455=89.23%

How to explain?

It may be because the 2021 values are > the 2020 values. So the method would prefer larger values?

Comparing with random values

The results obtained here, that is to say nearly 80% success for 910 real values ​​cumulating 10 races of 91 values ​​each coming from epidemiological measurements in France and Italy, are they GREATER than what would be produced by CHANCE? To answer this question, we performed 100 random batches, each simulating 910 representative random values, for a total of 91,000 random tests. Here are the results:

While the number of successes of real cases is 725 favorable cases (first significant number=1,2,3,5 or 8), the 100 batches produce an average number of successes of 667.96 with random values ​​between 641 and 697 (Figure 4).

Figure 4 Comparing the 910 real France§Italy results with 100 RANDOM RUNS, each simulating 910 random values between 1 and max value France§Italy (i.e. [1, 53843].

Out of curiosity we tested the same technique, no longer on the first but on the last digit: nothing happens which confirms the strong meaning of the first digit when it takes the values ​​1 2 3 5 8.

See example last digit here:

last digit out of the 910 France§ Italy values …

Result

456 (against 725 for the first digit) 100 random last digit test simulations with 910 cases each:

Positive results

435 443 465 458 463 440 478 452 479 457 446 432 483 450 465 440 455 463 465 450 468 483 443 466 480 457 441 469 449 435 469 449 485 447 432 453 449 477 448 453 460 471 456 446 457 446 408 468 476 452 471 442 472 447 447 482 428 466 484 435 444 455 460 460 452 460 442 431 461 455 444 448 462 447 459 439 433 463 439 476 478 447 442 443 463 456 472 477 446 455 459 460 448 476 428 483 443 460 427 443.

Average result score : 455.22

We bring here the proof that this remarkable property of the first digit disappears completely when considering the last digit.

Example of application: (Table 5 & Figure 5).

TEST TO DEA

2020

2021

7days

7514

6625

8days

8063

7154

9days

8577

7647

10days

9067

7883

11days

9408

8042

12days

9658

8212

13days

9832

8364

14days

9836

8419

15days

9731

8458

16days

9530

8482

17days

9187

8506

18days

8795

8496

19days

8308

8422

20days

7708

8338

21 days

7103

8195

Table 5 Comparing France Covid-19 March to May years 2020 and 2021, distances between positive case and death using Bravais-Pearson method on 7 days average splines values

Figure 5 Comparing France COVID19 distance between positive test and death for both periods March-May in 2020 and 2021.

Conclusion

Benford's law already makes it possible to validate or doubt the relevance, reliability and non-manipulation of batches of natural or medical data. What we are proposing today is beyond this Benford law, it is a PARTITION of the first 9 digits (or 10 when, as here, there is also some null data) in 2 clusters: Fibonacci cluster (1 2 3 5 8) and non-Fibonacci cluster (0 4 6 7 9). We suggest that the Fibonacci numbers cluster are all the more in the majority the more the data set is reliable and real. This constitutes a breakthrough in the analysis of natural, social and medical data. This method and the prospects that it should now be consolidated and deepened.

Finally, we have demonstrated by 91,000 random values draws that the "BFP" law applied to the 910 COVID-19 epidemiological values of France and Italy studied here produces results which cannot result from mere chance.

Acknowledgments

My thanks: To Dr Paolo Scampa (Universita di Bologna Italy) who suggested to m to compare these epidemiological data for France and Italy between 2020 and 2021. To Marc Niaufre (ex MICROSOFT international product manager for Excel) which introduced me to the Benford method and its subtle links with the Fibonacci sequence.

Thanks also for fructuous discussions about this article to Megawaty Tan (A private researcher based in South Sumatera, Indonesia), Robert Freeman M D. (author of "Nature's secret nutrient, golden ratio biomimicry, for PEAK health, performance and longevity), Philippe Risby (initiator of "Learning to Survive")  project in Portugal,  Valère Lounnas, (Free lance researcher at CMBI European Molecular Biology Laboratory (EMBL) Heidelberg ), Dr Daniel Favre, independant researcher, Brent,  Switzerland, Christian Marc, ( retired, MSEE-Dipl-Eng Physics, MBA (Beta Gamma Sigma, USA), Harvard HBS Alumn, General Director https://www.caravanedelapaix.com/),  and Ethirajan Govindarajan (adjunct Professor, Department of Cybernetics, School of Computer Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India, Director, PRC Global Technologies Inc., Ontario, Canada, President, Pentagram Research Centre Pvt. Ltd., Hyderabad, India) and Xavier Azalbert, Director FRANCE-SOIR newspaper (https://www.francesoir.fr/info-en-direct).

Particularly, this work is the result of multiple exchanges and advice, since the very beginning of the COVID-19 pandemic, for which I must thank Professor Luc Montagnier (Nobel prizewinner for his discovery of HIV, Fondation Luc Montagnier Quai Gustave-Ador 62 1207 Geneva, Switzerland).

Conflicts of interest

Author declare there are no conflicts of interest.

Funding

None.

References

  1. Sarkar T.  What is Benford’s Law and why is it important for data science? Canada: Towards Data Science; 2018.
  2. Perez JC. Chaos DNA and Neuro–computers: A Golden Link". Speculations in Science and Technology. 1991;14(4):0155–7785.
  3. Perez JC. DNA decrypted. Belgium: Marco Pietteur; 1997. 400p.
  4. Perez JC. Sapiens Mitochondrial DNA Genome Circular Long Range Numerical Meta Structures are Highly Correlated with Cancers and Genetic Diseases mtDNA Mutations. J Cancer Sci The. 2017;9(6):512–527.
  5. Perez JC. Epigenetics Theoretical Limits of Synthetic Genomes: The Cases of Artificials Caulobacter (C. eth–2.0), Mycoplasma Mycoides (JCVI–Syn 1.0, JCVI–Syn 3.0 and JCVI_3A), E–coli and YEAST chr XII. Global Journal of Science Frontier Research: GBio–Tech & Genetics. 2022;22(2):35–47
  6.  Perez JC. Wuhan COVID–19 Synthetic Origins And Evolution. International Journal of Research – Granthaalayah. 2020;8(2): 285–324.
  7. Perez JC, Montagnier L. COVID–19, SARS and Bats Coronaviruses Genomes unexpected Exogeneous RNA Sequences.  OSF Preprints. 2020.
  8. Perez J C,  Montagnier L. Covid–19, Sars And Bats Coronaviruses Genomes Peculiar Homologous RNA Sequences. International Journal Of Research –GRANTHAALAYAH. 2020;8(7):217–263.
  9. Perez J C, SARS–CoV2 Variants and Vaccines mRNA Spikes Fibonacci Numerical UA/CG Metastructures. Preprints. 2021.
  10. Perez J C, DUF1220 Homo Sapiens and Neanderthal fractal periods architectures breakthrough. SDRP Journal of Cellular and Molecular Physiology. 2017;1(1):25–49.
  11. Perez J.C, Codex biogenesis – Les 13 codes de. 2009.
  12. (Perez, 2018), Perez, J.C. Six Fractal Codes of Biological Life:perspectives in Exobiology, Cancers Basic Research and Artificial Intelligence Biomimetism Decisions Making. Journal of Medical Informatics and Decision Making. 2018;1(4):22–79.
Creative Commons Attribution License

©2022 Citation:. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.