Long-Term Safety and Stability of Gold Coil Fiducial Markers in Non-Small-Cell Lung Cancer Image-Guided Radiotherapy

Abstract

Background: Fiducial markers aid in tumor localization during radiotherapy of lung cancer. We investigated the long-term stability and safety of gold coil fiducial markers in non-small-cell lung cancer (NSCLC) patients.

Methods: Markers were implanted at our institution in 8 patients included in this analysis who underwent either conventionally fractionated radiochemotherapy or stereotactic body radiotherapy (SBRT, in one patient). Follow up CT scans were used to assess the coil stability.

Results: 15 out of 19 fiducials remained in the same anatomical location with an average follow-up of 2.9 years (range 4 months to 6.5 years) after implantation. None of the markers caused any toxicity.

Conclusion: These data illustrate that image guidance using fiducial gold coil markers is feasible in NSCLC radiotherapy with excellent long-term marker retention rate and procedural safety.

Keywords: Lung cancer; NSCLC; Fiducial markers; Image guidance; IGRT

Introduction

Accurate radiation treatment delivery in non-small cell lung cancer is technically challenging. While significant improvements in imaging technology lead to improved tumor delineation, other challenges such as respiratory and cardiac-induced motion, setup inconsistencies, and volume changes and deformation result in significant uncertainties when it comes to targeting the tumor and minimizing normal tissue toxicity [1-3]. Both conventional fractionation and SBRT necessitate accurate delivery of radiotherapy [4]. When radiotherapy targeting is suboptimal, there is an increased risk in radiation-induced injury which is directly related to the dose delivered to normal tissue structures [5,6]. Therefore, improving precision by minimizing safety margins without compromising tumor targeting should lead to a decrease in radiation toxicity.

Image-guided radiation therapy is a one approach that is used to address these issues. Techniques such as abdominal compression, accelerator beam gating with the respiratory cycle, dynamic tumor tracking, active breathing control and coaching/feedback technique are used for this purpose. Fiducial markers have been used to further improve tumor localization in lung cancer [7,8]. This technique is especially useful for certain radiation delivery techniques which use kV imaging, such as CyberKnife (Synnyvale, CA). For these modalities, tumor is difficult to precisely visualize on imaging. In addition, fiducial markers are beneficial for cases when there is a large degree of breathing-induced tumor motion [9]. While a recent single-institution study reported that Cyberknife radiosurgery for stage I NSCLC can be safely performed without using fiducials, this still needs to be confirmed in larger studies [10].

Complications from the marker placement procedure, including pneumothorax, pneumomediastinum, infection and bleeding must be taken into account. Initially percutaneous fiducial insertion technique was most commonly used. Unfortunately, it resulted in as high as a 60% rate of pneumothorax [11]. Endobronchial fiducial insertion and electromagnetic navigational guidance in addition to ultrasound guidance have reduced the rate of pneumothoraces to as low as 6% [12-15]. This significant reduction in morbidity makes fiducial-based image guidance in NSCLC a more attractive strategy. The use of fiducial markers has been shown to be safe with outcomes similar to non-invasive tumor-tracking systems [16]. Several types of fiducials are available at this time. Coils have been shown in one study to be superior to seeds as far as fiducial displacement and rate of pneumothorax [17]. Other types of markers exist with the most recent being liquid fiducials which are actively being investigated at this time [18]. Gold coil markers continue to be commonly used.

Little is known about the long-term stability and safety of fiducial markers in the lung. One recently published study showed that fiducials remained stable in 8 out of 10 patients with a follow-up from 6 to 18 months. Fiducial migration was only observed prior to the first fraction of radiotherapy [19]. Unlike fiducials implanted into liver and pancreas which remain in place for years due to the dense parenchyma of these organs, due to the lace-like lung structure it is less certain whether fiducials would remain in place years after their placement. In the present study,
we investigated long term stability and safety of fiducial markers implanted in lung cancer patients.

Methods and Materials

Patient characteristics

Seven patients with locally advanced NSCLC stages IIIA and IIIB were treated with radiochemotherapy and one patient who was not a surgical candidate with stage IB NSCLC was treated with SBRT alone. All eight patients had gold coil fiducial markers implanted between December 2008 and January 2011 on IRB approved protocols. See Table 1 for patient and treatment characteristics. Further details on patient characteristics and image acquisition are reported in Roman et al. [3].

Table 1: Relevant patient data.

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Sex</th>
<th>Location</th>
<th>Stage</th>
<th>Histology</th>
<th>GTV</th>
<th># of Markers</th>
<th>Guidance</th>
<th>Dose and Fractionation</th>
<th>Concurrent Chemo</th>
<th>Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>66</td>
<td>M</td>
<td>RUL</td>
<td>IIIB</td>
<td>Adenocarcinoma</td>
<td>88.9</td>
<td>2</td>
<td>EBUS</td>
<td>62.2 Gy in 35 fractions IMRT</td>
<td>Yes</td>
<td>Deceased</td>
</tr>
<tr>
<td>2</td>
<td>62</td>
<td>M</td>
<td>LLL</td>
<td>IIIB</td>
<td>SCC</td>
<td>182.4</td>
<td>4</td>
<td>EBUS</td>
<td>66 Gy in 33 fractions 3D conformal</td>
<td>Yes</td>
<td>Deceased</td>
</tr>
<tr>
<td>3</td>
<td>55</td>
<td>M</td>
<td>RUL</td>
<td>IIIB</td>
<td>Poorly-differentiated</td>
<td>58.3</td>
<td>2</td>
<td>EBUS</td>
<td>66.6 Gy in 37 fractions IMRT</td>
<td>Yes</td>
<td>Deceased</td>
</tr>
<tr>
<td>4</td>
<td>69</td>
<td>F</td>
<td>LLL</td>
<td>IIIB</td>
<td>Poorly-differentiated</td>
<td>46.2</td>
<td>2</td>
<td>EMNB</td>
<td>70 Gy in 35 fractions IMRT</td>
<td>Yes</td>
<td>Deceased</td>
</tr>
<tr>
<td>5</td>
<td>52</td>
<td>M</td>
<td>LLL</td>
<td>IIIA</td>
<td>Poorly-differentiated</td>
<td>42.7</td>
<td>2</td>
<td>EBUS</td>
<td>70 Gy in 35 fractions 3D conformal</td>
<td>Yes</td>
<td>Alive</td>
</tr>
<tr>
<td>6</td>
<td>53</td>
<td>F</td>
<td>RUL</td>
<td>IIIA</td>
<td>Adenocarcinoma</td>
<td>144.2</td>
<td>3</td>
<td>EBUS</td>
<td>66 Gy in 33 fractions 3D conformal</td>
<td>Yes</td>
<td>Alive</td>
</tr>
<tr>
<td>7</td>
<td>57</td>
<td>F</td>
<td>RUL</td>
<td>IIIA</td>
<td>Adenocarcinoma</td>
<td>59.8</td>
<td>2</td>
<td>EBUS</td>
<td>63 Gy in 35 fractions IMRT</td>
<td>Yes</td>
<td>Deceased</td>
</tr>
<tr>
<td>8</td>
<td>58</td>
<td>M</td>
<td>LLL</td>
<td>IIIB</td>
<td>SCC</td>
<td>15.3</td>
<td>2</td>
<td>EBUS</td>
<td>50 Gy in 5 fractions SBRT</td>
<td>No</td>
<td>Lost to follow-up</td>
</tr>
</tbody>
</table>

Sex: M: Male, F: Female. **Ethnicity:** W: White, B: Black. **SCC:** Squamous Cell Carcinoma, **Tumor locations:** RUL: Right Upper Lobe, LLL: Left Lower Lobe, **GTV:** Gross Tumor Volume, Measured in cubic centimeters, **EBUS:** Endobronchial Ultrasound, **EMNB:** Electromagnetic Navigational Bronchoscopy, **Gy:** Gray, **IMRT:** Intensity-Modulated Radiation Therapy, **SBRT:** Stereotactic Body Radiation Therapy.

Fiducial marker implantation

An experienced interventional pulmonologist R.W.S. performed the procedures with convex endobronchial ultrasound bronchoscopy guidance in all cases except for one in which electromagnetic navigational bronchoscopy (super Dimension, Medtronic, Minneapolis, MN) was used due to peripheral tumor location. Fiducial marker placement was performed under moderate sedation by using 0.35mm x 10 or 20mm fiducial gold coils (Visicoil, Iba Dosimetry, Reston, VA). For verification of marker placement and for treatment planning, patients underwent same-day four-dimensional computed tomography (4D CT). The markers were implanted in tumor or lymph nodes in the para-tracheal (8 markers), pre-tracheal (2 markers), hilar (4 markers), and intrapulmonary (5 markers) areas. Two to 4 markers (mean 2.4) were implanted in each patient. Figure 1 shows marker locations. Marker stability was monitored throughout treatment and after treatment every 3 to 6 months by follow-up diagnostic CT scans. The procedure note as well as all of the follow-up Radiation Oncology and Interventional Pulmonology notes available in the electronic medical records were reviewed in order to determine whether any short-term and long-term complications occurred. Adequate documentation was provided for all patients used in this study.

Marker stability assessment

Initial CT scans after the fiducial placement were compared with those at the last follow up. If the marker was not observed at any given follow up CT scan then dates when the coils were last seen and when they were first missing were recorded. For the cases in which markers were placed so close to each other initially that it was impossible to separate them visually, they were assumed to both remain in place unless they were clearly missing.

Long-term safety of the fiducial markers

Electronic medical records were reviewed to determine whether any safety effects resulted from the placement of gold coils. Any changes to the patients’ health and the physicians’ assessment were inspected for any evidence of fiducial-related long-term complications.

Results

Marker retention

The follow up ranged from 4 months to 6 years and 5 months with an average of 2 years and 10 months. Two patients are confirmed to be alive free of detectable cancer progression, five patients are confirmed to be deceased and one was lost to follow-up. The last follow-up CT scans revealed that 15 out of 19 of fiducials remained in the same anatomical location long-term. Short-term marker during-treatment stability for 6 of the patients included in this study was described in Roman et al. [3]—two markers were expectorated during radiotherapy leaving 17 fiducials in place. The two additional patients included in the present investigation retained their fiducials throughout treatment. After radiotherapy was completed, in two patients, one of the markers was expectorated between 2 and 4 months and 8 and 10 months, respectively as shown in Figure 2, leaving 15 fiducials in place. In the first patient, the fiducial marker was placed in lung parenchyma with very little solid tissue support and in the second patient, the coil was immediately adjacent to a large airway in a lung that has undergone significant fibrotic change and tumor resolution post-radiation therapy. Long-term retentions of coils in the same general location is illustrated in Figure 3 for the patients with the longest follow-ups (6 and 6.5 years). At the last follow-up, all patients except for patient 4 had at least one fiducial in place.

Procedure safety

The short-term safety of fiducial markers was described in Roman et al. [3] for 6 of the patients included in this study and was comparable to the previous studies. The two additional patients included in the present investigation did not have any procedural complications such as pneumothorax, pneumomediastinum, bleeding or infection. From careful review of documentation, there was no evidence that fiducial placement in any way contributed to long-term toxicity or mortality. Five of the patients who are deceased died of either cancer progression or medical co-morbidities, all completely unrelated to the fiducial marker placement.
Discussion

This study shows that fiducial marker implantation was successful and safe in all eight patients. Overall retention of the gold coils was excellent with follow-up as long as 6.5 years. Moreover, all markers that did not dislodge remained in either the same place or moved only slightly due to anatomic alteration secondary to tumor resolution and tissue scarring. This is the longest follow-up reported for fiducial marker stability. In one prior study of 10 patients from a single institution patients were followed up to 1.5 years [19]. In our patients, two markers in two separate patients out of a total of 19 markers were lost during...
Long-Term Safety and Stability of Gold Coil Fiducial Markers in Non-Small-Cell Lung Cancer Image-Guided Radiotherapy

Author Contributions

Conception and design: Leonid B. Reshko and Elisabeth Weiss
Data collection: Leonid B. Reshko and Elisabeth Weiss
Data analysis and interpretation: All authors.
Manuscript writing: All authors.

Final approval of manuscript: All authors.

References

Author’s Disclosure of Potential Conflicts of Interest

L.R. Reshko: None. R.W. Shepherd: UpToDate, Spiration Olympus Medical, Boston Scientific Corporation. E. Weiss: UpToDate, Varian Medical Systems, Philips Medical Systems, NIH.

