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The work of I. Prigogine about irreversible 
processes in fluids

I. Prigogine (Moscow 1917, Brussels 2003, Nobel Prize for 
Chemistry in 1977) and his school at the Free University of Brussels 
extended the scope of thermodynamics beyond equilibrium and 
systematized the analysis of irreversible, real situations. Regarding 
the nature of the turbulence, its main result is related to the principle 
of Minimum entropy production in systems close to equilibrium (as in 
the case of natural channels in “stable state”) and its consequence of 
“maximum entropy”, concordant with external restrictions. According 
to the statistical definition of L. Boltzmann (Vienna 1844, Duino 
1906) for this particular condition, in all the phase space of the system 
there is an equal probability for the events that are identified there, 
including naturally those of potential energy. A fluid in turbulence, 
evolving in “stable state” then presents the remarkable condition of 
“Equiprobability” for the energetic events in the considered volume.1,2

Entropy, probability and ergodicity
If in the previous conditions the phase space of the System has 

all its points with equal probability, then from the point of view of 
energy there is “ergodicity”, that is to say that the system performs 
the exploration of all the points of the phase space in a finite time; 
from the perspective of Statistical Mechanics this can be done only 
with a “Markovian” scheme as simple as possible, based on only two 
decision alternatives (left or right) in a one-dimensional dynamic, 
that is, a Brownian mechanism. Prigogine then demonstrates that the 
diffusive movement consistent with the Fick- Brown mechanism is 
the only way in which the kinetic and potential movements in a fluid 
develop, attending to the most general thermodynamic conditions, 
independently of any other restriction. This means that the Brownian 
movement is the natural way in which the irreversibility of the 
turbulence develops, in all cases.3,4

The normal distribution of probability
From the perspective of the theory of random functions, a 

mechanism that is totally erratic, that is to say that all the contributing 
factors of the movement are independent and small, then the 
“central limit theorem” is valid, in which the different distributions 
of Probability that govern such movements (whether normal or not) 
converge in a final normal distribution. Therefore the turbulence 
movements, totally heterogeneous (even in the macroscopic fillets, 
since any potential movement derives in Brownian trajectories), can 
be described by a normal distribution, being also congruent with the 
Fickian nature of the same. Nature then chooses the simplest and most 
uniform statistical description (normal law) for the most complex 
phenomenon (turbulence).5,6

L. Prandtl´s work for natural streams
The foundation of Prandtl´s curve

L. Prandtl (Freising 1875, Gottingen 1953), a brilliant German 
engineer and scientist, developed the approach to the movement 
of fluids in the presence of viscosity. Based on its concept of the 
logarithmic relationship for this purpose, He proposed the following 
curve, which describes the distribution of the longitudinal velocities 
distributed along the transversal axis (width) Figure 1. This curve, 
initially developed for ideal rugose tubes, was then extrapolated to 
turbulent channels. UL is the longitudinal speed measured in the partial 
width (transverse) WL. Umxm is the maximum speed measured at the 
center of the flow, that is, a partial (half) width of stream, W/2. The 
approximate equation that describes it has the following form:
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Abstract

The great advances in mathematics, physics and chemistry that happened from the 
second half of the twentieth century have radically changed the views on many of the 
fundamental questions of Science and its application to the demands of society. One 
of them is turbulence in fluids, the great challenge of all times. Many of its aspects 
remaining in the mystery, but its essence have been captured in general, especially by 
the theory of chaos and “strange attractors.” However, the role of thermodynamics 
is less known, especially the expansion that I. Prigogine in Belgium and L. Leopold 
developed in the USA. In this article a specific topic is explored briefly: The ergodic 
nature of the energetic processes in the natural flows, its relation with the entropy in 
the “dynamic equilibrium” and its application to the elucidation of the problem of the 
transversal distribution of speeds in the rivers, of great importance for the study of the 
environmental impacts in these bodies of water. The main result of this analysis is to 
verify the “universal” nature of the model proposed by L. Prandtl at the beginning of 
the 20th century.
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The formula approximate se pueden hallar excel que los valores 
numéricos que ajustan las constantes los datos experimentales son,7 

( )0.25 1.73 0.0123 0.245 1.1

2 2
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The first addition of the right member incorporates the effect of 
the viscosity that predominates in the border (wall) of the bed and 
fades towards the center. The second summation includes the linear 
effect of the free-flowing viscosity near the center of the channel. 
The parameters a, b, c, d and e are experimental adjustments of the 
equation. This relationship has a very great importance, since based 
on it, it is possible to base the calculations of the transverse diffusion 
of solutes (contaminants) in the flows subject to environmental threat.

Figure 1 Prandtl´s velocity traverse distribution.

The nature of Prandtl´s curve

Actually, the Prandtl curve is a simplified pictorial representation 
of a “random function”, that is, the infinite set of random magnitudes 
that are associated with the possible realizations (results) of that 
function, each with its own probability distribution (superimposed 
curves in brown) that develop around the average curve (blue).8 Figure 
2. Then, this curve thus drawn represents both the different, non-
univocal realizations that describe the innumerable different links that 
condition the phenomenon (brown curves); as the total representation 
of the “statistical regularity” (blue curve) derived from the so-called 
“law of large numbers”, for frequent random events.9 This is the actual 
effect of the turbulence in the flow, and the actual realization of the 
longitudinal velocity vectors along the width of said flow.

Figure 2 Possible results arranged around the mean.

Prandtl´s curve is a general description of 
velocity in turbulent flows
The longitudinal velocities lateral distribution in 
streams

This concept is described in Figure 3.

Figure 3 Velocity distributions in a stream.

Several models to represent this distribution

Despite its quite frequent use in river engineering tasks, the 
validity of the Prandtl curve and equation (1) is not recognized as 
a general phenomenon, in fact many different models have been 
proposed that aim to describe this distribution with “better accuracy” 
than (1).10 This would be plausible if the Prandtl curve were not may be 
recognized as the only possible one within the physical foundation of 
the phenomenon. This recognition is presented in the following way.

Leopold´s view of streams in “Steady state”: Principle 
of constancy of velocity in flows

L. Leopold (Albuquerque 1915, Berkeley 2006) was likewise an 
eminent American scientist who contributed to successfully apply the 
ideas of I. Prigogine to river hydraulics. It is due to the observation 
that, “in a natural flow in” stable state “, the average velocity is the 
same at birth and the delta”, that is, the “constancy of the average 
velocity in natural flows (principle of Leopold).

Thermodynamic explanation of Leopold´s Principle

Though Leopold did not base his Principle more than on the 
experimental observations on a large number of rivers in the USA, 
it is not difficult to show that this statement is derived from the 
principles revealed by I. Prigogine (and used also by Leopold).11 
Thus, based on the principle of “Equiprobability” for flows in “steady 
state” close to equilibrium, it can be seen that if the potential energy is 
distributed throughout the volume of the system in an “equiprobable” 
way, then the transfer of mass from one point to another of this phase 
space is equivalent for all points, and therefore the velocities are 
equivalent. The constancy of the average velocity in “the whole flow” 
(longitudinally) is then given as a consequence of the thermodynamics 
of the irreversible processes.

Application of Leopold´s principle to fluvial dynamics 
in transverse sense

If in a large distance the principle of Leopold is valid, much more 
so in a short distance. Thus, not only in the longitudinal sense is the 
validity of the flow rate in “Equiprobability” valid but also in transverse 
direction. Therefore, across the width distribution of longitudinal 
speeds is uniform, i.e. it is a straight line (constancy of velocities in 
this axis), as in upper Figure 4. If you take into account the viscosity 
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acting in the vicinity of the wall, then this distribution deflects as in 
lower Figure 4. Then, the Prandtl curve is actually a consequence of 
the Constancy Principle of velocity in the thermodynamic system 
considered, and in this sense it is a general definition, which is not 
met for other models of different velocity distribution.

Figure 4 Leopold principle and prandtl deflection

Normal (Gaussian) nature of Prandtl curve

The next step is to verify that the structure of the data associated 
with the curve corresponds to a normal distribution. To do this 
verification, we start from the known fact that in a distribution of 
this type the value of the “Mathematical Hope” (general average) 
coincides with the value of the “median” (that is, the value of the 
abscissa that separates equal of probability, on each side of the 
average). To calculate the Mathematical Hope of this random quantity, 
the following equation is used for random quantities:

{ }
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Applying this definition to the concrete case of equation (1) 
we have:
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This calculation can be done in an approximate way using an 
Excel routine on the concrete curve, equation (2):			 
This calculation can be done in an approximate way using an Excel 
routine on the concrete curve, equation(2)

 
/ 0.544

2
WM WL

   ≈  
    			            (5) 

The function UL/Umxm is also calculated for the mean value of 
the abscissa, WL / (W / 2) = 0.544:

( ) ( )0.25 * 1 .73 * 0.544 0.0123 0.245 * 0.544 1.1 0.954795
UL
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= + + − + ≈
           	

			                                                        (6)

Now, in relation to the curve of Figure 1, the notable values are drawn 
and the areas on the side and side of the mean value of the independent 
variable (abscissa) are calculated Figure 5.

Using the Excel tool to calculate the area under the curve, for the 
curve in question (with all the decimal expansion) we have:

1 0.427441154A ≈  And 2 0.447714436A ≈ 	      (6)

Now, if you calculate the ratio of these two areas, you have:

              

1 0.427441154
0.954718275

2 0.447714436
A
A

= = 	                    (7)

If this value is observed, it coincides with the value of the function 
of the mean value. This coincidence can be explained by examining 
Figure 6, in which a normalized Gaussian curve is drawn at maximum 
value = 1. In this unbiased curve we have that the function is equal to 
1, also that the ratio of the areas on each side of the mean is equal to 
1. If we take into account that the values of the Prandtl distribution, 
equation (2) and Figure 3, is of Brownian (Gaussian) nature but with 
a biased characteristic (due to presence of viscosity), then the ratio of 
the areas also equals the function and reflects the observed bias.

Figure 5 Probabilities about the mean value and important values.

Figure 6 Normalized Gaussian curve characteristics

Conclusion
The lateral distribution of the longitudinal velocities in the natural 

channels, initially described by L. Prandtl, is not only the manifestation 
of the effect of the viscosity by the presence of the walls of the bed 
on the flow movement, but the imposition of conditions general by 
the thermodynamics of irreversible processes. From this perspective, 
it is not a distribution, but the only possible one, according to these 
general restrictions. It is shown by the extensive works of I. Prigogine 
that the Normal distribution (Gauss) is a basic feature of the evolution 
of irreversible natural phenomena, manifesting itself in ergodic 
processes. As a consequence of the thermodynamic conditions on 
the entropy in the flows in “dynamic equilibrium” (stable state), the 
average speed in the natural channels must tend to be a constant value, 
attending to the “Equiprobability” of events. It is shown in this article 
how the specific conditions of the normal distribution are fulfilled for 
the Prandtl curve (equation), especially the convergence of the mean 
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value and the median.
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