Background and Aims

The determination of chemical substances present in the drowning medium could be a complementary tool in the forensic investigation [1,2]. Referring to this, both strontium (Sr) and silicon (Si) have proven to be interesting in the diagnosis of drowning (D), in addition to the histological and SEM plankton research in lower airways (Figures 1,2).

Figure 1: Plankton bolus in the alveolar duct (drowning in freshwater). ordinary (Figure A) and polarized light (Figure B) (EE, 480X).

Figure 2: In the upper right, endoalveolar foreign body observed by SEM (case of drowning in freshwater). In the image below elemental analysis with EDX: more evidence of Si; other organic and inorganic elements.
Materials and Methods

We selected 10 suspected drowning cases, in particular 5 bodies recovered from seawater (Sw) and 5 recovered from freshwater (Fw). In all cases, the investigation included an anamnestic and circumstantial study, an autopsy and histology, with particular attention to the polarization and fluorescent examination.

Within the 5 bodies recovered from the Sw, oligoelements, in particular Sr and Si were studied; only Si was studied in Fw suspected drowning. This was performed separately for the left (l) and the right (r) ventricles, with special regard to the difference of the concentration of each single oligoelement in both the l and r ventricular blood (Δ_{l-r}). Aquatic samples were analyzed in all cases [3].

Results

Autopsy: Classic pictures of D. in 9 cases. In 4 cases (Sw), the presence of pleural effusion, as well.

Histology: Acute emphysema was the prominent observation; edema and hemorrhages were also present [4]. In 9 cases (Figures 3-6), exogenous material in the airways, comprehensive of planktonic boli in the lower branches, clearly demonstrable at polarization microscope (and possibly confirmable at SEM’s elemental analysis with EDX). Zoo- and phytoplankton have been better identified in the UV microscope. It is mandatory to differentiate the planktonic material from gastric content, regurgitated and aspirated (Figure 7 & 8).

![Figure 5: Drowning in freshwater; recovery corpse in the sea after 20 days. Endoalveolar phyto- and geoplankton (EE, 240X, polarized light).](image)

![Figure 6: Drowning in freshwater; recovery corpse after few hours. Geo- and phytoplankton in a lower bronchus (EE, 120X, polarized light).](image)

![Figure 7: Same case of Fig. 7. Fragments of food (cooked meat and tuber cells) in the main stem bronchus (EE, 240X).](image)
Chemical findings: 5 bodies from the Sw have been investigated. In 4 cases ($\Delta_{r,s}$) was significantly positive for Sr and Si. The only negative for Sr and Si was a 37 years old subaqueous swimmer and the death was recorded by a camera (Figure 9): histologically, the lungs tested were negative for plankton; disseminated myocardiosclerosis was microscopically identified (sudden death). In Fw, Si ($\Delta_{r,s}$) was positive in 4/5 cases [5].

[6-13]:
 a. Microscopical screening for plankton with polarized light (crystals). Histological research of plankton in the lower bronchi and alveoli;
 b. Research of geoplanckton elements, in particular Si (silicon) with SEM/EDX.
 c. The determination of oligoelements in the blood of both ventricles: ($\Delta_{r,s}$) positive for Sr e Si is further support in the diagnosis of Sw drowning; ($\Delta_{r,s}$) positive for Si in the diagnosis of Fw drowning.

Acknowledgement
None.

Conflict of Interest
Authors declare that there is no conflict of interest.

References