Grow Moringa (*Moringa oleifera*), the miracle tree on the earth

Abstract

Moringa (*Moringa oleifera*) is commonly known as ‘drumstick tree’ or ‘horseradish tree’ is native to India, grows in the tropical and subtropical regions of the world. With its high nutritive values, every part of the tree is suitable for nutritional as well as commercial purposes. The leaves are rich in minerals, vitamins and other essential phytochemicals. Leaf extract is used to treat malnutrition, augment breast milk in lactating mothers. It is used as potential antioxidant, anticancer, anti-inflammatory, anti diabetic and antimicrobial agent. *Moringa Vallabh 1* flowers twice in a year i.e., July-August and October- November while the Local flowers once in year i.e. October and November. The peak flowering takes place during August- September and December-January in Vallabh 1 while December-January only in Local. Further, fruit harvesting is done during November- December and February March, respectively in Vallabh 1 and February March in Local. The fruit length was recorded 82.7-83.1 cm during October-November harvesting where it was noted 75.1-75.2 cm during January- February harvesting from 2013 to 2016 in Vallabh 1 while it was noted 56.1- 57.3 cm in Local cultivar. The fruit yield was increased from 97.87 kg to 204.13 kg from 2013 to 2016 during October-November where as it was noted 75.36 to 126.80 kg during January-February harvesting during the same year in Vallabh 1 while it was noted 27.15 to 71.48 kg per tree in Local. In this way it is concluded that *Moringa Vallabh 1* is found to be the best among the existing strains which bears fruit twice in a year.

Introduction

Moringa oleifera belongs to the family of Moringaceae is an embodiment of nutritional treasure due to many essential phytochemicals present in its leaves, pods and seeds. It provides 7 times more vitamin C than oranges, 9 times more protein than yoghurt, 10 times more vitamin A than carrots, 15 times more potassium than bananas, 17 times more calcium than milk and 25 times more iron than spinach. It is a sustainable remedy for malnutrition. Senegal and Benin of African countries treat their children with moringa who are deprived of breast milk. To augment milk production, the lactogogue, made of phytosterols, acts as a precursor for hormones required for reproductive growth and are generally prescribed to lactating mothers. It is rich in stigmasterol, sitosterol and kampesterol the phytosterols which increase the estrogen production, resulting stimulates the proliferation of the mammary gland ducts to produce milk. About 6 spoonfuls of moringa leaf powder can meet a pregnant woman’s daily iron and calcium requirement.

Soil and climate

It can be grown in tropical and subtropical regions of the world with a temperature ranging from 25-35°C. It grows well in sandy or loamy soil with pH 6.5-7.5 and a rainfall of 250-300 cm. Direct seeding method is generally preferred as it germinates profusely. The seeds are sown in 2 cm deep in well prepared nursery which germinate within 5-12 days. 30 cm high seedlings are ready for transplanting in the open field at 5x5 m apart. It can also be propagated through cutting having 1 m length and 4-5 cm in diameter, but due to shallow root system these plants tend to be sensitive to drought and winds.

Nutritive value

Moringa oleifera is a storehouse of nutrients. The leaves are rich in calcium, potassium, iron, zinc, magnesium and copper. Vitamins like vitamin A, vitamin B complex as folic acid, pyridoxine and nicotinic acid, vitamin C, D and E are present in huge amount. Tannins, sterols, terpenoids, flavonoids, saponins, anthraquinones, alkaloids; the phytochemicals and reducing sugar along with anti-cancerous agents like glucosinolates, isothesiocyanates, glycoside compounds and glycero-1-9-octadecanoate are present abundantly. The leaves can be used in the diet of the obese as they have a low calorific value. To treat digestive problems and thwart the colon cancer; the pods are very valuable due to their fibrous nature. The immature pods contain 46.78 per cent fiber and 20.66 per cent protein. The pods, leaves and flowers contain 30, 44 and 31 per cent amino acids, respectively. The immature pods and flowers showed similar amounts of palmitic, linolenic, linoleic and oleic acids. 227g of *Moringa* leaves can provide 1000 mg and *Moringa* powder can provide more than 4000 mg while the same amount of milk can provide 300-400 mg calcium only. *Moringa* powder can be used as a substitute of iron tablets for treatment of anemia. For proper growth of sperm cells and for the synthesis of DNA and RNA; intake of zinc is essential in a good diet. *Moringa* leaves contain 25.5-31.03 mg of zinc per kg mass, which is the daily requirement of zinc in the diet Table 1.

Processing of Moringa leaves as well as fruits

The phytochemicals were higher in raw seed flour and amino acid content was at its peak in fermented and germinated seed flour due to the biochemical activities during germination and microbial activity during fermentation. The boiling was the most effective of all the techniques as it reduced the cyanide, oxalate and phytate contents, more significantly than the other two methods as simmering and blanching. The bioavailability of certain nutrients; processing can be done for maximum utilization of required nutrients from the seeds and leaves as the presence of phytate and other anti-nutrients can reduce
Grow Moringa (Moringa oleifera), the miracle tree on the earth

Moringa has been found to cure both Types of diabetes. The patients suffer from non-production of insulin is known as Type 1 diabetes, which is a hormone that maintains the blood glucose level at the required value. Type 2 diabetes is associated with insulin resistance. This might also be due to Beta cell dysfunction, which fails to sense glucose levels, therefore reduces the signaling to insulin, resulting in high blood glucose levels. 19 Moringa acts as an anti-diabetic agent as the aqueous extracts of M. oleifera can cure streptozotocin-induced Type 1 diabetes and also insulin resistant Type 2 diabetes. Since beta cells have low number of antioxidants, this in turn causes apoptosis of the beta cells. 20,21 This reduces insulin secretion leading to hyperglycemia and in turn diabetes mellitus Type-2. The quercitin and phenolics flavonoids have been attributed as antioxidants that bring about a scavenging effect on ROS. It can be hypothesized that the flavonoids in Moringa scavenge the ROS released from mitochondria, thereby protecting the beta cells and in turn keeping hyperglycemia under control. 22,23 The high glucose in blood enters glycolysis in the mitochondria of beta cells and forms reactive oxygen species. This then causes apoptosis of beta cells which in turn leads to decreased insulin secretion, hyperglycemia and ultimately Type-2 diabetes. However, the cell apoptosis of beta cells can be averted by the use of moringa. It has antioxidants which combine with the reactive oxygen species and prevent cell damage and further consequences. 5,5,6,20,22 Diabetes may cause several complications such as retinopathy, nephropathy and atherosclerosis, etc. So, moringa can be used to prevent such ailments. Where there is hyperglycemia, the blood glucose reacts with proteins and causes advanced glycated end products (AGEs). These AGEs bind to RAGE which gets expressed on the surface of immune

Method of preservation

Moringa can be preserved without any loss of nutrients for a long time. Dried or freeze-dried leaves can be stored. Yang et al., 16 showed that a low temperature oven used to dehydrate the leaves retained more nutrients except vitamin C than freeze-dried leaves. Therefore, sun drying can be done easily under household appliance to maintain sustainable supply of nutrients in the leaves. The shelf life of moringa can be improved during preservation by dehydration without change in nutritional value. An extra dose of moringa may cause high accumulation of iron which can cause gastrointestinal distress and hemochromatosis problems. Therefore, a daily dose of 70g of moringa is suggested to be good which prevents over accumulation of nutrients. 18

Medicinal properties

Moringa is really referred as panacea and can be used to cure numerous diseases. It has long been used in herbal medicine by Indians and Africans. The presence of phytochemicals makes it a good medicinal agent.

Anti-diabetic properties

Moringa has been found to cure both Types of diabetes. The patients suffer from non-production of insulin is known as Type 1 diabetes, which is a hormone that maintains the blood glucose level at the

Table 1 The nutrient compositions of leaves, leaf powder, seeds and pods

<table>
<thead>
<tr>
<th>Nutrients</th>
<th>Fresh leaves</th>
<th>Dry leaves</th>
<th>Leaf powder</th>
<th>Seed</th>
<th>Pods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calories (cal)</td>
<td>92</td>
<td>329</td>
<td>205</td>
<td>–</td>
<td>26</td>
</tr>
<tr>
<td>Protein (g)</td>
<td>6.7</td>
<td>29.4</td>
<td>27.1</td>
<td>35.97 ± 0.19</td>
<td>2.5</td>
</tr>
<tr>
<td>Fat (g)</td>
<td>1.7</td>
<td>5.2</td>
<td>2.3</td>
<td>38.67 ± 0.03</td>
<td>0.1</td>
</tr>
<tr>
<td>Carbohydrate (g)</td>
<td>12.5</td>
<td>41.2</td>
<td>38.2</td>
<td>8.67 ± 0.12</td>
<td>3.7</td>
</tr>
<tr>
<td>Fibre (g)</td>
<td>0.9</td>
<td>12.5</td>
<td>19.2</td>
<td>2.87 ± 0.03</td>
<td>4.8</td>
</tr>
<tr>
<td>Vitamin B1 (mg)</td>
<td>0.06</td>
<td>2.02</td>
<td>2.64</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Vitamin B2 (mg)</td>
<td>0.05</td>
<td>21.3</td>
<td>20.5</td>
<td>0.06</td>
<td>0.07</td>
</tr>
<tr>
<td>Vitamin B3 (mg)</td>
<td>0.8</td>
<td>7.6</td>
<td>8.2</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Vitamin C (mg)</td>
<td>220</td>
<td>15.8</td>
<td>17.3</td>
<td>4.5 ± 0.17</td>
<td>120</td>
</tr>
<tr>
<td>Vitamin E (mg)</td>
<td>448</td>
<td>10.8</td>
<td>113</td>
<td>751.67 ± 4.41</td>
<td>–</td>
</tr>
<tr>
<td>Calcium (mg)</td>
<td>440</td>
<td>2185</td>
<td>2003</td>
<td>45</td>
<td>30</td>
</tr>
<tr>
<td>Magnesium (mg)</td>
<td>42</td>
<td>448</td>
<td>368</td>
<td>635 ± 8.66</td>
<td>24</td>
</tr>
<tr>
<td>Phosphorus (mg)</td>
<td>70</td>
<td>252</td>
<td>204</td>
<td>75</td>
<td>110</td>
</tr>
<tr>
<td>Potassium (mg)</td>
<td>259</td>
<td>1236</td>
<td>1324</td>
<td>–</td>
<td>259</td>
</tr>
<tr>
<td>Copper (mg)</td>
<td>0.07</td>
<td>0.49</td>
<td>0.57</td>
<td>5.20 ± 0.15</td>
<td>3.1</td>
</tr>
<tr>
<td>Iron (mg)</td>
<td>0.85</td>
<td>25.6</td>
<td>28.2</td>
<td>–</td>
<td>5.3</td>
</tr>
<tr>
<td>Sulphur (mg)</td>
<td>–</td>
<td>–</td>
<td>870</td>
<td>0.05</td>
<td>137</td>
</tr>
</tbody>
</table>

All values are in 100g per plant material. 9–11

DOI:

Citation:

©2018 Rajbhar et al.
cells. This interaction leads to increased transcription of cytokines like interleukin-6 and interferons. At the same time, the cell adhesion molecules are expressed on the surface endothelium of arteries. This facilitates transendothelial migration which causes inflammation in the arteries and leads to atherosclerosis. Moringa is used as an anti-atherosclerotic agent. The anti-atherogenic nature can be accounted for by the antioxidant properties of moringa.

Anticancer properties

Moringa can be used as an anticancer agent as it is natural, reliable and safe, at established concentrations. It can be used as an anti-neoproliferative agent, thereby inhibiting the growth of cancer cells. Soluble and solvent extracts of leaves have been proven effective as anticancer agents. Furthermore, research papers suggest that the anti-proliferative effect of cancer may be due to its ability to induce reactive oxygen species in the cancer cells. The reactive oxygen species induced in the cells leads to apoptosis. This is further proved by the up regulation of caspase 3 and caspase 9, which are part of the apoptotic pathway. Moreover, the ROS production by moringa is specific and targets only cancer cells, making it an ideal anticancer agent. Tiloke et al., also showed that the extracts increased the expression of glutathione-S-transferase, which inhibits the expression of antioxidants. Anticancer agents targeting cancer using ROS induction are common, but these substances should also be able to attack the antioxidant enzymes. Moringa leaf extracts have antioxidants and anticancer agents which induce ROS. The compounds of the leaves that are held responsible for the anticancer activities are glucosinolates, niazimicin and benzyl isothiocyanates. Benzyl isothiocyanate has been shown to be linked with cancer. BITC causes intracellular ROS, which leads to cell death. This could be one of the reasons for moringa to be a good anticancer agent.

Other diseases

Moringa can be used as an important neuroprotectant. Cerebral ischemia is caused due to obstruction of blood flow to the brain. This leads to reperfusion and lipid peroxidation, which in turn results in reactive oxygen species. Moringa with its antioxidants can reduce the reactive oxygen species, thereby protecting the brain. It is used to treat dementia, as it has been shown to be a promoter of spatial memory. The leaf extracts have shown to decrease the acetylcholine esterase activity, thereby improving cholinergic function and memory. Adeyemi et al., showed that moringa in diet can increase protein content and decrease levels of urea and creatinine in blood, preventing renal dysfunction. Moringa decreased acidity in gastric ulcers by a percentage of 86.15 and 85.13 at doses of 500mg and 350mg, respectively and therefore can be used as an antulcer agent. It is prescribed for patients suffering from AIDS. It is suggested to be included in the diet, with the view of boosting the immune system of HIV positive individuals. The hydro-alcoholic extract of moringa flowers reduced the levels of rheumatoid factor, TNF-alpha and IL-1 in arthritic rats. So, moringa can be an important therapy for arthritis. It has been proven as a good antimicrobial agent. Viera et al., has shown that the extracts of Moringa oleifera can act against bacteria like Bacillus subtilis, Staphylococcus aureus and Vibrio cholera. The antibacterial effects of the seeds were accounted for by the presence of pterygospermin, moringine and benzyl isothiocyanates.

Table 2: Nutritional compositions and medicinal uses of different parts of Moringa.

<table>
<thead>
<tr>
<th>Part of tree</th>
<th>Medicinal uses</th>
<th>Nutritive properties</th>
<th>Suggestion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaves</td>
<td>Moringa leaves treat asthma, hyperglycemia, Dyslipidemia, flu, heart burn, syphilis, malaria, pneumonia, diarrhea, headaches, scurvy, skin diseases, bronchitis, eye and ear infections. Also reduces, blood pressure and cholesterol and acts as an anticancer, antimicrobial, Antioxidant, anti diabetic and anti-atherosclerotic agents, neuroprotectant</td>
<td>Moringa leaves contain fiber, fat proteins and minerals like Ca, Mg, P, Cu, Fe, and S. Vitamin-A (β-carotene), vitamin B-choline, vitamin B1-thiamine, riboflavin, nicotinic acid and ascorbic acid are present. Various amino acids like Arg, His, Lys, Trp, Phe, Thr, Leu, Met, Ile, Val are present. Phytochemicals like tannins, sterols, saponins, trepenoids, phenolics, alkaloids and flavonoids like quercetin, isoquercitin, kaemfericitin, isothiocyanates and glycoside compounds are present</td>
<td>Presence of flavonoids provides leaves the anti diabetic and antioxidant properties. The isothiocyanates are anticancer agents. Flavonoids like quercitin and others are known for anti-proliferative, anticancer agent. Presence of minerals and vitamins help in boosting the immune system and cure a myriad of diseases.</td>
</tr>
<tr>
<td>Seeds</td>
<td>Help in treating hyperthyroidism, Chrohn’s disease, antherpes-simplex virus arthritis, rheumatism, gout, cramp, epilepsy and sexually transmitted diseases, can act as antimicrobial and anti-inflammatory agents</td>
<td>Contains oleic acid (Ben oil), antibiotic called pterygospermin, and fatty acids like Linoleic acid, linolenic acid, behenic acid, Phytochemicals like tannins, saponin, phenolics, phytyate, flavanoids, terpenoids and lectins. Apart from these, fats, fiber, proteins, minerals, vitamins like A, B, C and amino acids</td>
<td>Flavonoids have anti-inflammatory property. The antibiotic pterygospermin is responsible for antimicrobial properties. The other phy-chemicals help in treating various diseases.</td>
</tr>
<tr>
<td>Root Bark</td>
<td>Root bark acts as a cardiac stimulant, anti-ulcer and anti-inflammatory agent</td>
<td>Alkaloids like morphine, moringinine, minerals like calcium, magnesium and sodium</td>
<td>The alkaloid helps the bark to be antiulcer, a cardiac stimulant and helps to relax the muscles.</td>
</tr>
<tr>
<td>Flower</td>
<td>Moringa flowers act as hypocholesterolemic, anti-arthritis agents can cure urinary problems and cold</td>
<td>It contains calcium and potassium and amino acids. They also contain nectar</td>
<td>The presence of nectar makes them viable for use by beekeepers.</td>
</tr>
<tr>
<td>Pods</td>
<td>Moringa pods treat diarrhea, liver and spleen problems, and joint pain</td>
<td>Rich in fiber, lipids, non-structural carbohydrates, protein and ash. Fatty acids like oleic acid, linoleic acid, palmitic acid and linolenic acid are also present</td>
<td>The presence of PUFA in the pods can be used in the diet of obese.</td>
</tr>
</tbody>
</table>
Commercial value

Moringa seeds are used to extract oil called the Ben oil. It is rich in oleic acid, tocopherols and sterols. It can also withstand oxidative rancidity. The oil can be used in cooking as a substitute for olive oil, as perfumes and also for lubrication. The pods can absorb chemical pollutants and pesticides. Its seed also has great coagulant properties and can precipitate organics and mineral particulates. Chemical coagulants such as aluminum sulfate and ferric sulfate or polymers remove suspended particles in wastewater by neutralizing the electrical charges of particles in the water to form flocs making particles filterable. Moringa seed is a natural coagulant, containing a cationic protein that can clarify turbid water. This property is attracting much research as other coagulants such as alum, activated carbon and ferric chloride are expensive and rare.

Suhartini et al., developed a two-stage clarifier for the treatment of tapioca starch wastewater by placing coconut fiber followed by a layer of sand media mixed with powdered Moringa oleifera, this lead to improvement on physical and chemical characteristics, stabilizing pH value. Moringa seed extract has the ability to eliminate heavy metals as lead, copper, cadmium, chromium and arsenic from water. Moringa oleifera functionalized with magnetic nanoparticles such as iron oxide were found beneficial in surface water treatment by lowering settling time. Seed extracts have antimicrobial properties that inhibit bacterial growth, which implies preventing waterborne diseases. These properties of Moringa oleifera seeds have wide applicability in curing diseases and can enhance the life quality in rural communities as it is found abundantly.

Its seed can be used in cosmetics and good sources of biodiesel while the seedcake, can be used as manure. Its flower is used to make tea with hypcholesterolemic properties. Its flower is rich source of nectar for honeybee. The growth hormone from the leaves, called Zeatin is an excellent compound for foliar application and can enhance the yield by 25-30 per cent. Incorporation and fortification of moringa can be significantly overcome the nutrient deficiencies and malnutrition. Aluko et al., evaluated that 92.5 per cent maize and 7.5 per cent moringa seed flour combination was well accepted due to its crispiness, aroma, taste and colour. Cereal gruels have also been fortified by moringa leaves in order to improve the protein content and energy. Owusu et al., used moringa as a fortificant and produced cream and butter crackers with moringa and Ipomoea batatas as fortificants, for adding additional nutrients to snacks. M. oleifera leaves can be incorporated in the diet of hens and layers thereby providing excellent protein source, substituting other expensive ingredients such as soybean meal and ground nut cake. In light of several studies, it is suggested that such addition can be done to prepare varieties of snacks.

Generally snacks are made up of corn meal; so, a little addition of moringa to maize flour can add nutritive value to it in the form of protein, energy and minerals. Moringa Vallabh 1 and Local sticks of 1.0m length and 20cm girth were planted in the boundary of Medicine Fruits Block of Horticultural Research Centre at Sardar Vallabhbhai Patel University of Agriculture & Technology, Meerut (U.P.) during February 2013. Their vegetative characters, flowering and fruit yield were presented in the Table 3. At this region Moringa Vallabh 1 flowers twice in a year i.e., July-August and October-November while the Local flowers once in year i.e. October and November. The peak flowering takes place during August-September and December-January in Vallabh 1 while December-January only in Local. Further, fruit harvesting is done during November-December and February-March, respectively in Vallabh 1 and February-March in Local. The fruit length was recorded 82.7-83.1cm during October-November harvesting where it was noted 75.1-75.2cm during January-February harvesting from 2013 to 2016 in Vallabh 1 while it was noted 56.1-57.3cm in Local cultivar. The fruit yield was increased from 97.87 kg to 204.13kg from 2013 to 2016 during October-November where as it was noted 75.36 to 126.60kg during January-February during the same year in Vallabh 1 while it was noted 27.15 to 71.48kgper tree in Local. In this way it is concluded that Moringa Vallabh 1 is found to the best among the existing strains which bears fruit twice in a year.(Figures 1-3).

Table 3: Vegetative characters, flowering and fruit yield of Moringa Vallabh 1 and local

<table>
<thead>
<tr>
<th>Character</th>
<th>2014 Vallabh 1</th>
<th>2015 Vallabh 1</th>
<th>2016 Vallabh 1</th>
<th>2014 Local</th>
<th>2015 Local</th>
<th>2016 Local</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree height (m)</td>
<td>2.35</td>
<td>2.57</td>
<td>3.95</td>
<td>4.21</td>
<td>4.8</td>
<td>5.67</td>
</tr>
<tr>
<td>Trunk girth (cm)</td>
<td>21.5</td>
<td>25.5</td>
<td>36.5</td>
<td>41.5</td>
<td>45.8</td>
<td>57.4</td>
</tr>
<tr>
<td>Plant spread (E-W) (m)</td>
<td>1.85</td>
<td>1.97</td>
<td>2.95</td>
<td>3.23</td>
<td>3.5</td>
<td>3.74</td>
</tr>
<tr>
<td>Plant spread (N-S) (m)</td>
<td>1.75</td>
<td>1.88</td>
<td>2.85</td>
<td>3.28</td>
<td>3.45</td>
<td>3.67</td>
</tr>
<tr>
<td>Leaf length (cm)</td>
<td>92.5</td>
<td>86.4</td>
<td>93.4</td>
<td>87.6</td>
<td>93.5</td>
<td>87.1</td>
</tr>
<tr>
<td>Peak flowering</td>
<td>Aug-Sep</td>
<td>Dec-Jan</td>
<td>Dec-Jan</td>
<td>Aug-Sep</td>
<td>Dec-Jan</td>
<td>Dec-Jan</td>
</tr>
<tr>
<td>Fruit harvesting</td>
<td>Oct-Nov</td>
<td>Jan-Feb</td>
<td>Jan-Feb</td>
<td>Oct-Nov</td>
<td>Jan-Feb</td>
<td>Jan-Feb</td>
</tr>
<tr>
<td>Fruits / panicle</td>
<td>28.5</td>
<td>22.4</td>
<td>14.4</td>
<td>32.3</td>
<td>24.2</td>
<td>24.2</td>
</tr>
<tr>
<td>Fruit length (cm)</td>
<td>82.7</td>
<td>75.1</td>
<td>56.1</td>
<td>83.2</td>
<td>75.4</td>
<td>56.5</td>
</tr>
<tr>
<td>Fruit girth (cm)</td>
<td>7.2</td>
<td>6.5</td>
<td>5.8</td>
<td>7.2</td>
<td>6.4</td>
<td>5.3</td>
</tr>
<tr>
<td>Fruit weight (g)</td>
<td>130.5</td>
<td>125.6</td>
<td>87.6</td>
<td>131.5g</td>
<td>126.4</td>
<td>86.4</td>
</tr>
<tr>
<td>Number of fruits/tree</td>
<td>750</td>
<td>600</td>
<td>310</td>
<td>1150</td>
<td>970</td>
<td>465</td>
</tr>
<tr>
<td>Fruit yield/tree (kg)</td>
<td>97.87</td>
<td>75.36</td>
<td>27.15</td>
<td>151.22</td>
<td>122.6</td>
<td>40.17</td>
</tr>
</tbody>
</table>

Conclusion and future prospects

There is need of research on *M. oleifera* to gain its importance in India. It is essential that the nutrients of this wonder tree are exploited for different purposes. It has great anti-diabetic and anti-cancer properties. Moringa Vallabh 1 is found to be the best among the existing strains which bears fruit twice in a year.

Acknowledgements

None.

Conflict of interest

Author declares that there is no conflict of interest.

References

Grow Moringa (Moringa oleifera), the miracle tree on the earth

53. Fuglie LJ. The Moringa Tree: A local solution to malnutrition; Church World Service in Senegal. 2005

