Sacred geometry

Abstract

Sacred Geometry is a description of the use of fingerprint classifications in a geometric location. The purpose of the application is to analyze the position of a given code on a chart which is a display of an entire sequence of fingerprint codes. Through this method, with the understanding that mathematics is an exact science, the interpretation thereof allows us to examine the compatibility of groups of individuals who maintain a given geometric display, the ability to work together in harmony. This concept asserts its foundation on the dimensions of the perimeter of the Great Pyramid Khufu in Giza Egypt, which reflects time and space in its construction.

Volume 2 Issue 2-2016

Andres J Washington
Fingerprint Geometric Analysis, USA

Correspondence: Andres J Washington, Fingerprint Geometric Analysis, Post Office Box 165 Bronx, New York I045I-0165, USA, Tel 91 49603526, Email director@ dermatoglyphics.com

The concept of sacred geometry consists of two components
i. The fingerprint diagonal reverses sequence arrangement.
ii. The primary classification analysis.

The original sequence

111	110	101	100	011	010	001	000
111	$I I 1$	111	111	$1 I I$	111	111	111
111	110	101	100	011	010	001	000
110	110	110	110	110	110	110	110
111	110	101	100	011	010	001	000
101	101	101	101	101	101	101	101
111	110	101	100	011	010	001	000
100	100	100	100	100	100	100	100
111	110	101	100	011	010	001	000
011	$0 I 1$	011	011	$0 I 1$	011	011	011
111	110	101	100	011	010	001	000
010	010	010	010	010	010	010	010
111	110	101	100	011	010	001	000
001	001	001	001	001	001	001	001
111	110	101	100	011	010	001	000
000	000	000	000	000	000	000	000

The fingerprint diagonal reverses sequence arrangement

The original sequence is for the sixty-four possibilities when the \# 2,3,4,7,8 and 9 fingers are considered; this sequence only includes the inner and outer loops. The Original Sequence is arranged in the following order:

1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32
33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48
49	50	51	52	53	54	55	56
57	58	59	60	61	62	63	64

Due to the fact that the inked fingerprint is in actual reverse, (Mirroring) it has been determined that the original sequence would be arranged in reverse diagonally (The First Reference Sequence) displaying a different perspective of the total possibilities in relation to each other.

The first reference sequence

1	9	15	21	25	29	31	64
56	2	10	16	22	26	63	32
50	55	3	11	17	62	27	30
44	49	54	4	61	18	23	28
40	43	48	60	5	12	19	24
36	39	59	47	53	6	13	20
34	58	38	42	46	52	7	14
57	33	35	37	41	45	51	8

The first reference sequence

111	111	001	011	111	011	001	000
111	110	110	101	100	100	100	000
000	110	110	000	010	110	001	000
001	111	110	110	101	100	000	100
110	001	101	101	111	010	101	010
001	001	111	110	101	000	100	100
100	111	010	100	011	110	001	100
010	001	001	111	000	101	101	100
000	101	000	100	011	100	101	000
011	010	010	000	111	110	101	101
100	001	101	001	011	010	011	100
011	011	000	010	001	111	110	101
110	110	010	110	010	100	001	010
011	000	011	010	010	001	111	110
111	111	101	011	111	011	101	000
000	011	011	011	010	010	001	111

This diagonal reverse is then used to provide the arrangement of the Second Reference Sequence.

The Second Reference Sequences

1	10	19	28	37	46	55	64
2	11	20	38	47	56	3	12
21	30	39	48	4	13	31	40
5	14	23	32	6	24	7	16
58	49	59	41	60	51	42	33
61	52	34	25	62	53	44	35
26	17	63	54	45	27	18	9
57	50	43	36	29	22	15	8

The second reference sequence works as verification in its outcome of how the first reference sequence was established. If the first reference sequence was not in proper arrangement, then the second reference sequence would not be in a uniform sequencing pattern. A close examination of the fingerprint codes found in the second reference sequence reveals a definite pattern along a diagonal basis.

Area "A"	111	110	101	100	011	010	001	000
	111	110	101	100	011	010	001	000
Area "B"	110	101	100	010	001	000	101	100
	111	110	101	011	010	001	111	110
	011	010	001	000	100	011	001	000
	101	100	011	010	111	110	100	011
	011	010	001	000	010	000	001	000
	111	110	101	100	111	101	1 II	110
	110	111	101	1.11	100	101	110	111
	000	001	000	010	000	001	010	0 II
	011	100	110	111	010	011	100	101
	000	001	011	100	000	001	010	011
	110	111	001	010	011	101	110	111
	100	101	000	001	010	100	101	110
Area "C"	111	110	101	100	011	010	001	000
	000	001	010	011	100	101	110	111

It should be noted that the second reference sequence has been divided into three areas; described as area A , area B , and area C . In area "A" the diagonal of each box contains its opposite code. In area " B " and " C " the diagonal of each box contains the same code in reverse.

1	10	19	28	37	46	55	64
2	11	20	38	47	56	3	12
21	30	39	48	4	13	31	40
5	14	23	32	6	24	7	16
58	49	59	41	60	51	42	33
61	52	34	25	62	53	44	35
26	17	63	54	45	27	18	9
57	50	43	36	29	22	15	8

The second reference sequence

Area "A"	$\begin{aligned} & 111 \\ & \text { III } \end{aligned}$	$\begin{array}{\|l\|} \hline 110 \\ 110 \end{array}$	$\begin{array}{\|l\|} \hline 101 \\ 101 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 100 \\ 100 \end{array}$	$\begin{aligned} & \hline 011 \\ & 011 \end{aligned}$	$\begin{aligned} & \hline 010 \\ & 010 \end{aligned}$	$\begin{array}{\|l\|} \hline 001 \\ 001 \end{array}$	$\begin{aligned} & 000 \\ & 000 \end{aligned}$
Area "B"	110	101	100	010	001	000	101	100
	111	110	101	011	010	001	111	110
	011	010	001	000	100	011	001	000
	101	100	011	010	111	110	100	011
	011	010	001	000	010	000	001	000
	111	110	101	100	111	101	111	110
	110	111	101	111	100	101	110	111
	000	001	000	010	000	001	O1O	Oll
	011	100	110	111	010	011	100	101
	000	001	011	100	000	001	010	011
	110	111	001	010	011	101	110	111
	100	101	000	OOI	010	100	101	110
Area "C"	111	110	101	100	011	010	001	000
	000	OOI	010	OII	100	101	110	111

Definitions

Includes

In the display of an extended geometric area for a given code, any code which occupies the area by which two lines join together, forming an angle, or any code which is used to create the lines which provide the design for the given code in the original sequence, the first reference sequence or the second reference sequence is therefore included in the structure of that code's design. All codes which are included represent personalities that are compatible with one another. This is because all of the aforementioned codes are required to create the geometric design.

Encompassed

In the display of an extended geometric area for a given code, any code(s) which are surrounded by the geometric design and is not included in the makeup of that design and is not intersected by any of the lines which makeup that design is therefore encompassed within the extended geometric area. Geometric codes which are encompassed represent the personalities of persons that can be controlled by individuals who show in the display codes which are used to create the extended geometric area.

Intersected

In the display of an extended geometric area for a given code, any code which is crossed by the line(s) which make up the geometric design is in turn intersected by those lines. The codes which are intersected are the codes of persons who are incompatible with persons who are represented by the codes which are used to create the geometric design. This is because the intersection of a code is an offence to the geometric position of that code.

Example \Original Sequence
\# $35=\mathrm{IOI}$
OII
Includes
35,48 and 59
Encompass
44,45,46*\&52*
Intersects
36,37,38,39,40*
43,46,47,51,52,
53\&54

1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32
33	34	38	-36	37	38	39	40
41	42	43	44	45	46	47	48
49	50	5	52	53	54	55	56
57	58	59	60	61	62	63	64

Example \backslash Original Sequence

\# 35 = IOI
 OII

Includes
35,48 and 59
Encompass
$44,45,46^{*} \& 52^{*}$
Intersects
36,37,38,39,40 ${ }^{\text {* }}$
43,46,47,51,52,
53\&54

1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32
33	34	34	-36	32	38	39	40
41	42	43	44	45	46	47	48
49	50	5	52	58	54	55	56
57	58	59	60	61	62	63	64

111	IIO	1 OI	100	OII	OIO	OOI	000
111	II I	III	111	III	111	111	111
1 II	IIO	101	100	Oll	OIO	001	000
IIO	IIO	IIO	110	IIO	110	110	110
111	IIO	101	100	OII	OIO	OOI	000
IOI	1 OI	101	101	101	1 OI	1 OI	101
111	110	101	100	OII	OIO	OOI	000
100	100	100	100	100	100	100	100
111	110	101	100	OII	01 O	OOI	000
O II	OII	OfI	OTI	Oft	OLI	O II	011
111	110	$1 \phi 1$	100	OII	010	OOI	000
OIO	OIO	O1O	OIO	OIO	010	010	010
111	110	$1 \phi 1$	100	014	010	OOI	000
OOI	OOI	OOI	-01	OOI	OOI	OOI	001
111	110	101	100	011	010	001	000
000	000	000	000	000	000	000	000

Primary classification first reference sequence

a. Primary classification 12 over $\mathbf{1 2}$

b. Primary classification $\mathbf{1 8}$ over $\mathbf{3 0}$

c. Primary classification 11 over 27

d. Primary classification 3 over 25

e. Primary classification 19 over 17

Primary classification analysis

To file fingerprint records by the primary classification, a reasonable distribution of codes over the 1024 classifications had to be considered. Fingerprint technicians took into account the phenomenon of different populations across a geographical location and it was best determined that the ten digits should be assigned numerical values (in most cases) in the following way: $1=16,2=16,3=8,4=8,5=4$, $6=4,7=2,8=2,9=1$ and $10=1$. Thus the total numerical values of the even digits plus 1 for consistency is reflected as the numerator of the primary classification code while the total numerical values of the odd digits plus 1 for consistency is reflected as the denominator of the primary classification code.

However, today most agencies or departments do not file fingerprints according to the Henry System of Fingerprint Classification and Filing, they using the Automated Fingerprint Identification System (AFIS) and (IAFIS) entry and comparison to store and retrieve fingerprint minutiae.

In Fingerprint Geometric Analysis the concept of the primary classification is presented from a different perspective. The 1024 classification codes of the primary are displayed in a multi-sequential primary classification chart which is an example of the Fingerprint Diagonal Reverse Sequence Arrangement. With this an individual code can reside within up to three different locations forming a geometric design which is triangular or linear. There is however additional adjustments. The numerical values are assigned to the digits in a different way. Here we take into account the frequency of whorl patterns over the ten set of fingerprints. Fingerprints on digits with a high frequency of whorls are assigned a lower numerical value while fingerprints with a low frequency of whorls are assigned a higher numerical value. This would make all pattern frequencies more equal to the other. As before the addition of 1 to the numerical value(s) for consistency is included and the values of the right hand are presented over the values of the left hand instead of the value of even digits over odd.

Male frequency of whorl patterns

Primary classification analysis

Male \& Female Frequency of Whorl Patterns

Dist	Number	1	2	3		5	6	7	8	\bullet	10
103	p	1006615	2601211	787299	97749	94061	2407512	1074205	1285150	56743	2027
108	ci	66614	551942	12376	180728	35151	14779	277035	362973	1482915	567567
105	di	82436	458327	81429	17197	1139	2206336	26674	256940	297877	171900
106	\times	2379	4364	3584	4302	43	1998	16032	3619	5120	616
107	PM	1234283	1001221	773319	1733535	300817	431238	740084	533591	551268	9491
108	cm	1954	33999	15504	S5616	18318	1017	40927	13149	25995	5074
109	${ }^{\text {a m }}$	105401	58523	26302	18043	3106	67116	56294	19270	644	1912
110	xM	1098	20264	2180	3737	553	1172	21848	3162	1702	309
11	po	3962126	735116	${ }^{955263}$	3906537	172666	780220	2105657	S06971	211295	20543
112	co	123232	201011	32305	1348378	cooses	40379	367016	53357	41469	8181
113	$\stackrel{10}{ }$	1509114	93328	20598	120034	3117	${ }^{7} 7759$	260399	27501	245	471
14	xo	1470	8236	1332	5538	${ }^{88} 7$	1591	4963	3976	793	75
103	P1	176056	51696	102657	131562	${ }_{1562}$	513977	226992	249219	733130	24970
104	ci	12180	103400	14569	33651	6059	33603	61533	20154	35847	132991
${ }^{105}$	d	12093	75399	7942	1763	120	46794	45961	38013	${ }^{41593}$	${ }^{\text {9455 }}$
106	${ }^{0}$	369	7995	469	463	30	551	2324	601	1157	145
107	PM	249358	264070	130160	286478	${ }^{554} 42$	138410	189608	121402	145009	3195
${ }^{108}$	cm	43	$t 000$	2544	14582	4634	44	9464	409	11504	3516
109	${ }^{\text {dm }}$	27868	14337	3558	2424	566	${ }_{2}^{25295}$	${ }^{11948}$	3644	1112	
110	xM	242	3554	260	670		537	4537	119	474	02
111	PO	739816	${ }^{197879}$	${ }^{17728}$	${ }^{768509}$	240097	242326	500645	125241 15096	5660 1707	6228
112	co	27018	53859	57656	321550	102323	16334	102705	18030		365
113	${ }^{ \pm 0}$	377200	${ }_{1}^{2623}$	15716	${ }^{20763}$	775	23021	50008	5013	475	4
14	xo	262	1379	190	1146	134	55	11288	95	189	
mas	Total	9836637	1263	22920	${ }^{976213}$	3280236 16	7699	909	$378 \mathrm{sa4}$	7ssosos	2435017 16

Add the value of the right hand digits plus 1 for consistency over the value of the left hand digits plus 1 for consistency.								
				1	2	3	4	5
The of	Total The	value	Right Hand + 1	2	4	8	1	16
	Total The	value	teft Hand +1	1	4	8	2	16
				6	7	8	9	10

What is also essentially paramount to this analysis is the dimensions of the multi-sequential primary classification chart. The length of each side of the chart must be 9131 units of measurement to provide a perimeter of 36524 units of measurement. The presentation of this on
a monitor must be reflected in the computer application. In this way accurate information for analysis will be provided.

The great pyramid Khufu at Giza, Egypt

i. Each side of the base of the Great Pyramid is 9131 pyramid inches. (A pyramid inch is 2.5426924 centimeters.) This gives us a perimeter of 36524 pyramid inches $(9131 \times 4=36524)$.
ii. 36524 pyramid inches expresses three units of time; 365 for 365 days in a year, 52 for 52 weeks in a year and 24 for 24 hours in a day! In addition, $36524.22=$ the number of days in 100 years.

The great pyramid

9131 Pyramid inches $=365.2422$ Royal Egyptian Cubits.

"This appears not to be a coincidence because the length of each side of the Great Pyramid's base is 365.2422 Royal Egyptian Cubits" ("pyramid cubits").

NCIC FPC filing sequence formula

This concept can be applied to the National Crime Information Center Finger Print Classification (NCIC FPC) Filing Sequence Formula.

Let us see how this works

NCIC FPC Filing Sequence Formula

The NCIC FPC contains 20 characters, each pair of characters represents one digit beginning with the right thumb as the No. 1 digit and ending with the left little finger as the No. 10 digit; the left thumb is hen No. 6. For every consecutive pair of characters, one code can be assigned out of a possible 115 codes (from PI to XX). This means that there are actually only 10 individual segments for the NCIC FPC code, with each one maintaining a pair of the 20 characters to represent an individual code. Let (X) equal the number of assigned to the NCIC FPC code. Each of the ten segments with the exception of segment \#1, must be assigned a decimal number which shall be added to the assigned number for the given NCIC FPC Code.

Digit	1	2	3	4	5	6	1	8	9	10
Number										
Anim				O003						0009

This adding of the decimal number to the assigned number for the NCIC FPC code must be done in order to establish a unique numerical value to each segment of the ten-segment unit. Segment number 1, however, need not be assigned a decimal value because the other nine segments maintain an identity distinguishable from it. (The reason for choosing \#1 segment as the one which shall not be assigned a decimal value is because \#1 segment is the only segment which can provide
us with the lowest possible number in the calculation if no decimal was to be added to it.) It can be noted that in this way no two or more segments can provide the same exact number. Furthermore, no two NCIC FPC codes can provide the same filing number, even if the original code appeared in a reverse sequence.

| NCIC | $\mathbf{1 4}$ | $\mathbf{X X}$ | AA | CO | 04 | SR | $\mathbf{5 9}$ | TT | DM | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| FPC | | | | | | | | | | |

After the decimal number is added to the assigned number for the NCIC FPC code, multiplication takes place. That is, \#1 segment times \#2 segment and that product multiplied by \#3 segment, and so on until \#10 segment has been included in the multiplication. The end product shall provide the filing cation for the given NCIC FPC code. When there are ten segments and 115 possible codes for each segment, the total number of combinations is $404,555,773,570,791,015,625$.

NCIC FPC filing sequence formula

Example:

i. $(2.6) X(11.50001) X(11.30002) X(0.60003) X(1.60004) X$ (11.40005) X (7.10006) X (11.20007) X (0.80008) X (2.20009) $=517,628.2327$.
ii. In conclusion, the NCIC FPC code, 14XXAACO04SR59TTDM10.
iii. Would be filed as $517,628.2327$ between.
iv. 0.000000000100451 and $40,457,160,428$.

This formula was designed to encourage the development of a computer application that would display the geometric location of an NCIC FPC code so that it can be applied to the Fingerprint Diagonal Reverse Sequence Arrangement.

Acknowledgments

None.

Conflicts of interest

The author declares that there are no conflicts of interest.

