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Abbreviations: DS: Discrete Shanker; ZTP: Zero–Truncated 
Poisson; ZTPL: Zero–truncated Poisson Lindley; ZTDS: Zero–
Truncated Discrete Shanker; PDF: Probability Density Function; 
pmf: probability mass function; ( )S x : survival function; ( )r x
: failure hazard rate, ( )*r x   : reversed failure rate; ( );Df x θ : pmf 
of DS distribution, ( );zf x θ : pmf of ZTDS distribution; [ ]

'
rη : [ ]

'
rì

factorial moment of ZTDS distribution; [ ]
'
rµ  : thr  raw moment of 

DS distribution; rP : thr  Probability of DS distribution; z
rP : thr

Probability of ZTDS distribution

Introduction
It is sometimes inconvenient to measure the life length of a device, 

on a continuous scale. In practice, we come across situation, where 
lifetime of a device is considered to be a discrete random variable. For 
example, in the case of an on off switching device, the lifetime of the 
switch is a discrete random variable. If the lifetimes of individuals in 
some populations are grouped or when lifetime refers to an integral 
numbers of cycles of some sort, it may be desirable to treat it as a 
discrete random variable. When a discrete model is used with lifetime 
data, it is usually a multinomial distribution. This arises because 
effectively the continuous data have been grouped. Such situations may 
demand another discrete distribution, usually over the non negative 
integers. Such situations are best treated individually, but generally 
one tries to adopt one of the standard discrete distribution. Some of 
those works are by Nakagawa and Osaki,1 where the discrete Weibull 
distribution is obtained; Roy2 studied discrete Rayleigh distribution; 
Kemp3 derived discrete Half normal distribution. Krishna and Pundir4 
investigated the discrete Burr and the discrete Pareto distribution. 
Gomez-Deniz5 derived a new generalization of the geometric 

distribution obtained from the generalized exponential distribution of 
Marshall and Olkin.6 Borah et al.,7,8 studied on two parameter discrete 
quasi- Lindley and discrete Janardan distributions respectively. Borah 
and Saikia9 introduced discrete Sushila distribution. Dutta and Borah10 
studied zero- modified Poisson- Lindley distribution.

 Derivation of the proposed distribution
One parameter continuous Shanker distribution introduced by 

Shanker11 with parameter θ  is defined by its probability density 
function (pdf)
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Discretization of continuous distribution can be done using 
different methodologies. In this paper we deal with the derivation 
of a new discrete distribution which may be called discrete Shanker 
(DS) distribution. It takes values in {0, 1, 2, . . .,}. This distribution 
is generated by discretizing the survival function of the continuous 
Shanker distribution
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	 Where ( );f x θ denotes the pdf of Shanker distribution.

The pmf of discrete Shanker distribution ( );Df x θ  may be 
obtained as
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Proposition 1: The probability generating function (pgf) of DS 
distribution is given by
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Proposition 2: The cumulative distribution of DS distribution is given 
by
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The survival function of DS distribution has obtained as 
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The failure hazard rate may be obtained as
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The reversed failure rate
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The second rate of failure is obtained as
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	The Proportions of probabilities is given by
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Probability recurrence relation: 

 Probability recurrence relation of DS distribution may be obtained 
as
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Here 

r
P  denotes Pr(X= r).

Factorial moment recurrence relation 

Factorial moment generating function (fmgf) may be obtained as
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First four factorial moments may be obtained as 
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Proposition 3: The general form of factorial moment may also be 
written as
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Hence, mean and variance may be obtained as 
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respectively. 

Zero truncated discrete shanker (ZTDS) 
distribution:

Zero- truncated distributions are applicable for the situations when 
the data to be modeled originate from a generating mechanism that 
structurally excludes zero counts. The discrete Shanker distribution 
must be adjusted to count for the missing zeros. Here the zero-
truncated discrete Shanker distribution has been derived.

 The pmf ( );zf x θ of Zero-truncated DS distribution has been 
derived as
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Probability recurrence relation for ZTDS distribution

 The pgf ( )zG t of zero-truncated DS distribution may be obtained 
as
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Probability recurrence relation ZTDS distribution may obtained as
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Proposition 4: The cumulative distribution of ZTDS distribution is 
given by
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The survival function of ZTDS distribution is given by
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The reversed failure rate
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The second rate of failure is obtained as
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The proportions of probabilities is given by
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Factorial moment recurrence relation for ZTDS 
distribution 

Factorial moment generating function ( )
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Factorial moment recurrence relation of ZTDS distribution may 
be obtained as
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Variance  2
Zσ

 
of ZTDS distribution may be obtained as 
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Proposition 5: The general form of factorial moment may be written 
as
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Method of estimation
The parameter θ of ZTDS distribution has been estimated using 

Newton-Rapson iterative method, selecting appropriate initial guest 
value 0θ  forθ , where the function of  θ  may be written as
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based on relative 

frequency of .

Similarly, function of θ  may be written as
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Newton- raphson iterative method
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Replacing 0θ  by 1θ  and repeating the process till it converse. 

(Balagurusamy.12)

Goodness of fit

In this section, an attempt has been made to test the suitability of 
ZTDS distribution. Eight data sets, which are used by Shanker et. al.,13 
have been used for a comparative study (Tables 1-8).

Table 1 Number of mothers in rural area having at least one live birth and 
neonatal death

No. of 
neonatal 
death

Observed 
no. of 
mothers

Expected frequency

ZTDS ZTP ZTPL

1 409 399.7 399.7 408.1

2 88 102.3 102.3 89.4

3 19 17.5 17.5 19.3

4 5 2.2 2.2 4.1

5 1 0.3 0.3 1.1

Total

522 522 522.2 522

Estimate θ 1.7914 0.512047 4.199697

X2 0.181 3.464 0.145

d.f. 2 1 2

p- value 0.9137 0.0627 0.9301
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Table 2 The number of estate area having at least one live birth and one 
neonatal death

No. of 
neonatal 
death

Observed 
no. of 
mothers

Expected frequency

ZTDS ZTP ZTPL

1 71 71 66.5 72.3

2 32 29.43 35.1 28.4

3 7 12.3 10.9 10.9

4 5 4.11 3.3 4.1

5 3 2.2 0.8 2.2

Total

118 118 118 118

Estimate θ 1.2053 1.055102 2.049609

2x 2.289 0.696 2.274

d.f. 3 1 2

p- value 0.5147 0.4041 0.3208

Table 3 Number of mothers in urban area with at least two live births by the 
number of infant and child deaths

No. of 
neonatal 
death

Observed 
no. of 
mothers

Expected frequency

ZTDS ZTP ZTPL

1 176 176 164.3 171.6

2 44 50.13 61.2 51.3

3 16 13.35 15.2 15

4 6 3.41 2.8 4.3

5 2 1.11 0.5 1.7

Total

244 244 244 244

Estimate θ 15,499 0.744522 2.209422

2x 2.852 7.301 1.882

d.f. 2 1 2

Table 4 Number of mothers in rural area with at least two live birth by the 
numbers of infant and child deaths

No. of 
neonatal 
death

Observed 
no. of 
mothers

Expected frequency

ZTDS ZTP ZTPL

1 745 744.97 708.9 738.1

2 212 215.02 255.1 214.8

3 50 58.01 61.2 61.3

4 21 15 11 17.2

5 7 3.77 1.6 4.8

6 3 1.33 0.2 1.8

Total

1038 1,038 1038 1038

Estimate θ 1.5376 0.719783 3.007722

2x 8.256 37.046 4.773

d.f. 4 2 3

p-value 0.0826 0 0.1892

Table 5 Number of literate mothers with at least one live birth by the 
number of infant deaths.

No. of neonatal 
death

Observed no. 
of mothers Expected frequency

ZTDS ZTP ZTPL

1 683 683.04 659 674.4

2 145 150.81 177.4 154.1
3 29 31.36 31.8 34.6

4 11 6.27 4.3 7.7

5 5 1.22 2.2

Total

873 873 873 873

Estimate θ 2 0.538402 4.00231

2x 10.022 8.718 5.31

d.f. 3 1 2

p- value 0.0184 0.0031 0.0703

Table 6 Number of mothers having experienced at least one child death

No. of 
neonatal 
death

Observed 
no. of 
mothers

Expected frequency

ZTDS ZTP ZTPL

1 89 89 76.8 83.4
2 25 31.26 39.9 32.3
3 11 10.2 13.8 12.2
4 6 3.18 3.6 4.5
5 3 0.96 0.7 1.6
6 1 0.4 0.2 0.9

Total

135 135 135 135

Estimate θ 1.3568 1.038289 2.089084

2x 3.912 7.90 3.428

d.f. 2 1 2

p- value 3.912 7.9 3.428

Table 7 Number of mothers having at least one neonatal death

No. of 
neonatal 
death

Observed 
no. of 
mothers

Expected frequency

ZTDS ZTP ZTPL

1 567 567.04 545.8 561.4

2 135 138.37 162.5 139.7

3 28 31.71 32.3 34.2

4 11 6.98 4.8 8.2

5 5 1.9 0.6 2.6

Total

746 746 746 746

Estimate θ 2 0.595415 3.625737

6.227 26.855 3.839

d.f. 3 2 2

p-value 0.1012 0 0.1467
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Table 8 Number of european red mites on apple leaves, reported by german

No. of 
neonatal 
death

Observed 
no. of 
mothers

Expected frequency

ZTDS ZTP ZTPL

1 38 38 28.7 36.1

2 17 21.32 25.7 20.5

3 10 10.9 15.3 11.2

4 9 5.28 6.9 3.1

5 3 2.47 2.5 1.6

6 2 1.13 0.7 0.8

7 1 1 0.2
0.8

8 0 0.39 0.1

Total

80 80 80 80

Estimate θ 0.9316 1.791615 1.185582

2x 3.753 9.827 2.467

d.f. 3 2 3

p- value 3 2 3

Conclusion
The discrete Shanker distribution has been introduced by 

discretizing the continuous Shanker distribution. Zero- truncated 
discrete Shanker (ZTDS) distribution have also been investigated. 
The parameter of the distribution has been estimated using Newton 
– Raphson iterative method. The application of ZTDS distribution to 
eight sets of data covering demography, biological sciences and social 
sciences have been studied. A comparative study has been made with 
ZTP and ZTPL distributions of Shanker et al.,13 It is observed that 
in most cases ZTPL gives much closer fits than ZTP distribution. It 
is also observed that ZTDS gives very closer fit to ZTPL and in some 
cases ZTDS gives better fit than ZTPL distribution.14-18
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