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geometric distribution

Abstract

A bivariate geometric distribution is an extension to a univariate geometric distribution
where the occurrence of three different types of events is considered. Many statisticians
have studied and given different forms of a bivariate geometric distribution. In
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this paper, we considered the form given by Phatak & Srechari.! We estimated the

parameters of this distribution under three different models using maximum likelihood
estimation (mle) and derived deviances as the goodness of fit statistics for testing the
parameters and deviance difference for comparing two models. Using simulated data
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we found that the deviance measure works well to test a reduced model against a full

model.
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Introduction

Many situations in real world cannot be described by a single
variable. Simultaneous occurrence of multiple events warrants
multivariate distributions. For instance, univariate geometric
distribution can represent occurrence of failure of one component of a
system. However, to study systems with several components that may
have different types of failures, such as twin engines of an airplane or
the paired organ in a human body, bivariate geometric distributions are
suitable. Bivariate geometric distribution has increasingly important
roles in various fields, including reliability and survival analysis.
There are different forms of a bivariate geometric distribution. Phatak
& Sreehari' provided a form of the bivariate geometric distribution
which is considered here. They introduced a form of probability
mass function which take into consideration of three different types
of events. There are other forms which can be seen in Nair & Nair,
Hawkes,> Arnold et al.,* and Srechari & Vasudeva.” Basu & Dhar®
proposed a bivariate geometric model which is analogous to bivariate
exponential model developed by Marshal & Olkin.” Characterization
results are developed by Sun & Basu,® Sreehari,” and Sreehari &
Vasudeva.’

Omey & Minkova'® considered the bivariate geometric distribution
with negative correlation coefficient and analyzed some properties,
probability generating function, probability mass function, moments
and tail probabilities. Krishna & Pundir," studied the plausibility of a
bivariate geometric distribution as a reliability model. They derived
the maximum likelihood estimators and Bayes estimators of the
parameters and various reliability characteristics. They also compared
these estimators using Monte-Carlo simulation.

In this paper, the parameters of a saturated model, reduced
model and generalized linear model (glm) for a bivariate geometric
distribution are estimated using the maximum likelihood method.

We also derived deviances as the goodness of fit statistics for testing
parameters corresponding to these models and deviance difference to
compare two related models in order to determine which model fits
the data well. Rest of the paper is organized as follows: Univariate
Geometric Distribution, Bivariate Geometric Distribution, Maximum
Likelihood Estimation, Hypothesis Testing, Data Simulation and
Analysis and finally Conclusion.

Univariate geometric distribution

The probability mass function (pmf) of a random variable Y which
follows a geometric distribution with probability of success p can be
written as,

P(Y=y)=p(1—p)y,y:0,1,2,...; O<p<1,0<q:1—p<1.

The moment generating function can be given by,

p
1—ge

M, (1) =

2

the mean and the variance of this distribution are

=7p=1andVar(Y)=— —

1- 1-p q
E(Y)= =
( ) /uY p p p2 p2

An extension to the univariate geometric distribution is the
bivariate geometric distribution which is discussed in the next section.

Bivariate geometric distribution

The joint probability mass function of a bivariate geometric
distribution can be obtained by the product of a marginal and a
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conditional distribution, introduced by Phatak & Sreehari.! They
considered a process from which the units could be classified as good,
marginal and bad with probabilities 4, s 9 and q, = (1—‘11—92)
respectively. They proposed that the probability mass function of
observing the first bad unit after several good and marginal units are
passed as follows:

M4y
P(%=y.Y,=y,) =( 1y zququzyz (I-0-42). 7,9, = 0,1,2,..;
1

(1)
0< q,+4, <1
Here ¥ and Y, denote the number of good and marginal units
respectively before the first bad unit is observed.
The marginal distribution of ¥, is a geometric distributions with

probability of success [1*‘117*‘12), and can be written as follows,

1-¢,
l—g — Y1

P(Yl—yl)—[m][%] =012,
(2)

The conditional distribution of Yz given Y; is

Nty +1
P(YZ:y2|Y1:y1):[ ly 2]‘]2);2 (l_qz)yl s ylayz :071a2,...
2

(3)

The product of the marginal distribution of ¥, in equation (2) and
the conditional distribution of ¥, given ¥, in equation (3) gives the
mass function of bivariate geometric distribution in equation (1).

Maximum likelihood estimation

Estimation of parameters in the absence of regressors

In order to find the maximum likelihood estimators (mle)s from a
saturated model (parameters are different for each pair of observations),
it suffices to consider the likelihood functions based on the marginal
and conditional mass functions. Let ¥>-+¥ be independent random
vectors each having bivariate geometric distribution with different
pairs of parameters (qliani) fori=12,...,n..

The log likelihood function based on the conditional distribution
of ¥, given 1 can be written as follows using (3):

B

[ =

i

[yZi Ing, +(y“+1)ln(l—q2i)+1n(y“+y2i )!— lnyli!—yzl.!}
4)

2i and setting it equal to zero,

Differentiating (4) with respect to 4

we get the mle of 95, as,
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g = Vai
2yt yytl

©)

The log likelihood function based on the marginal distribution of
Yl from (2) is,

=2 [ln(l_qli_qu)_ln(l_qu)+ylilnqli_yliln(1_q2i)]

i (6)
Differentiating (6) with respect to 9 and setting it equal to zero,
the mle of 4; can be derived as,
P Ni
Gl Vit yytl ™)

Here, 9 and oy are the maximum likelihood estimators of ¥y,
and 9,;, i =1,...,n respectively under the saturated model.

Similarly the maximum likelihood estimators (mle)s from a
reduced model (parameters are the same for each pair of observations)
can be obtained as:

i = ¥

2 J+p, (3
§ = »n

L y+y,+ )

Where ‘}1 and qu are the maximum likelihood estimators of ¥
and %, respectively under the reduced model.
Estimation of parametersin the presence of regressors:

In the presence of regressors, one can employ a generalized linear
model and hence estimate the parameters in terms of the estimated

model parameters. The conditional distribution of Yz given Y] in (3)
can be set as exponential family representation as follows,

+y, )!
P(T=plti=n)= ewp y2lan{‘(yl”)l“(l‘%)}‘J’m();l'i;:z')
12+

Here the natural parameter and the function of the natural

parameter respectively are,

f=In q,

b(8)= —(y1+1) In (l—qz)
Thus the mean of the conditional distribution of ¥, given ¥, is

B n+l

u =E[YlY=y]=b"(0) = -
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A generalized linear model based on the conditional distribution of Here, B,, is an element of the matrix A, corresponding to the
Yz given YI can be written as, covariate X; which represents the effect of covariate to the mean
responses through the link function & (,Ul.) .
p .
g (#i): In H = In=X XPaisi=1,2,.n; n>p Differentiating (6) again with respect to 9, setting it to zero and
= using (10) we get,
Since, Yz represents the number of trials before a certain event N i

.. . . . q,. =
can occur it is considered as count response, the linear predictor can li exp{ X8 %555 ;
% j=172if J}
(11

be written as the logarithm of the mean #; . Thus the conditional link

function can be expressed as, Hypothesis testing
yH 2 In order to test the identical parameter assumption across each pair
g (,Ui) =In ¢, =2 X5/, of observed data, we derived deviance as a goodness of fit statistics.
S Additional deviance statistics are derived for generalized linear model
. v+l (10) (glm) to compare two nested glms.

=1-
=
exp{ Z§:1x2ijﬁ2j }

Deviance for reduced model with identical parameter assumption

The log likelihood function for the saturated model can be written using (1) and the maximum likelihood estimates of the parameters 7j;

and 9,; from equations (5) and (7) respectively as follows,

l(bmax;y) =X [J’u Iy =y, (4901425, 0 vy =, ln(J/n+J’2i+1)_ln(J’1i+Y2i+1)+ln(y”+)’2i)!_ln)ﬁi =n y,; !]
i (12)

Similarly, the log likelihood function of the reduced model can be written using (1) and the maximum likelihood estimates of 4, and 1,
from equations (8) and (9) respectively as follows,

1(b;y) = ) [J’1i1ﬂ}71_)’1i In( 7+, +1)+py; 11172_)’2[111()71"')72"‘1)_1“()71+J72+1)+IH(J’1i+J’2i)!_an’u !_an’b‘!}
i=t (13)

Thus the deviance statistic for testing the identical parameter for each observed pair of data can be expressed as follows,

i=n . +y,.+1 ) 4,41 +y,.+1
Dl =2 |:l(bmax ;y)—l(b;y)J =22 |y lné_)’w ln%-}')}% In"*—y,), lnyll )32’ lnyll sz'
-1 7, iyl V2 Vil Ayl (14)

According to Dobson [12], D1 follows a »* distribution with (2n—2) degrees of freedom.

Deviance for a GLM

The deviance statistic for the glm of interest can be written using (1) and the maximum likelihood estimates of 91 and %2 based on the
glm from equations (10) and (11) respectively as follows,

..
it +In ! }+ln(yh.+y2i)!—lnyh.!—lnyZi!

eXP{Zﬁf xzyﬂz,‘} eXP{Zj:;p x2ijﬁ2j

1(b;y) =X | yIn A +¥y;1n| 1
i=1 exp{Zj.;{’xzijﬁzj}
(15)

Thus the deviance can be expressed as follows
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i=n Jj=p Jj=p
,D” = 2[l(bmax;y)_l(b;y):| =22 y2ilnyzi_(yli+y2i+1)ln(y1i+y2i+1)+ 2 ;B (J’u"‘J’zi"’l)_)’z;ln expy 2 X5 (=il

i=1

J=1 J=1

(16)

According to Dobson [12], DH follows ZZ distribution with (2n— p) degrees of freedom.

Comparison between two GLMs

In order to compare two nested generalized linear models, we consider the following hypotheses. The null hypothesis corresponding to a

smaller model ( M, 0) in terms of number of regression parameters is

B
ﬂ22

ﬁZq_

The alternative hypothesis corresponding to a bigger model (M, with ¢ < p < n) within which the smaller model is nested can be written as,

B
ﬁZZ

ﬂZp_

We can test H, against #, using the difference of the deviance statistics. Here, /(b,;y) is used to denote the likelihood function corresponding

to the model 47 and 1(b;;y) to denote the likelihood function corresponding to the model M, . Hence the deviance difference can be written as,

i=1

AD =D -D =2 (1B )~1(803) ] = 2[ B3 | = 2[ 18101833 ] = b5 “prz,,ﬂz,,»

=1

According to Dobson [12] this AD follows 7" distribution with
P —q degrees of freedom.

If the value of AD is consistent with the l(z,w) distribution we
would generally choose the M~ corresponding to #, because it
is simpler. On the other hand, if the value of AD is in the critical
region i.e., greater than the upper tail 100 x % point of the Z(2 »-q)
distribution then would reject #, in favor of #, on the grounds that

model M , provides a significantly better description of the data.

Data simulation and analysis

To determine the efficiency of our derived deviances we need
to have data with known parameters. However, we cannot generate
data directly from bivariate geometric distribution using the available
computer software packages. Krishna and Pundir suggested an
algorithm based on a theorem given by Hogg et al.,'’ to generate
random numbers from bivariate geometric distribution. According
to this, paired values can be generated from a bivariate geometric
distribution using the following steps,

Jj=p =g =g
}()’11"’)’21 +1)_J’zi ln{exp{ 2 Xf; }_z‘/li_l]_1 z Xz;yﬂz,,’}()’n"’)’zi +1)‘*’)’2iln[e7‘p{ z ngﬁz/}_."h_lﬂ
=1 =t =

Step 1: Generate k random numbers from univariate geometric

N . .. 1-¢,—¢,
distribution with probability of success I
—
Step 2: Suppose that our generated random numbers from the

S X ey X

geometric distribution are *;>%, k-

Step 3: Generate & random numbers y ij , k times each from a

negative binomial distribution with parameters X, + l and (1_q2) .

Step 4: These generated pairs are from the bivariate geometric
distribution with parameters % and 9.
Deviance checking for reduced model

In this subsection, we use the following steps to check our derived
deviance for the reduced model with identical values of parameters
(ql ,6]2) for each observed pair of data.

Step 1: Assume some fixed values of 91 and 1.

Step 2: Generate £ random numbers from univariate geometric
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distribution with probability of success [l_ql_qu using the assumed
values of 4, and 9, from Step 1. =4,

Step 3: Suppose that our generated random numbers from the
geometric distribution are X, X, X, .

Step 4: Generate k& random numbers y,-j , k times each from the

negative binomial distribution with parameters ¥, *1 and (1-4,) .

Step 5: The generated pairs are from the bivariate geometric
distribution with parameters q, and 4, .

Table | Estimation of deviance for different parameters under consideration
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Step 6: Estimate deviance which is derived in (14).

We take the values of ¢, and ¢, ranging from 0.10 to 0.90 and
satisfying the constraint q,+q,<1. We considered several values
for the pair (q1 ,qz) and generate random pairs to observe the efficiency
of our derived deviance under different parametric values. For each
specified pairs of parameters (ql,qz) , we ran this experiment twice
to see whether there is a change in our decision due to randomness.
The values of the pair of parameters and the corresponding deviance
values are tabulated as follows.

Parameters Deviance (0.95) (0.975) (0.99)
q,=0.30,q,=0.30 177.4164 231.8292 238.8612 2472118
q,=0.30,q,=0.30 172.3071 231.8292 238.8612 2472118
q,=0.30,q,=0.40 185.3107 231.8292 238.8612 2472118
q,=0.30,q,=0.40 159.5293 231.8292 238.8612 2472118
q,=0.30,q,=0.50 193.8942 231.8292 238.8612 2472118
q,=0.30,q,=0.50 158.266 231.8292 238.8612 2472118
q,=0.30,q,=0.60 223.1697 231.8292 238.8612 2472118
q,=0.30,q,=0.60 193.667 231.8292 238.8612 2472118
q,=0.40,q,=0.30 216.3456 231.8292 238.8612 2472118
q,=0.40,q,=0.30 211.828 231.8292 238.8612 2472118
q,=0.50,q,=0.30 148.1757 231.8292 238.8612 2472118
q,=0.50,q,=0.30 254.3887 231.8292 238.8612 2472118
q,=0.60,q,=0.30 239.3245 231.8292 238.8612 2472118
q,=0.60,q,=0.30 2154915 231.8292 238.8612 2472118
q,=0.30,q,=0.50 232.1984 231.8292 238.8612 2472118
q,=0.30,q,=0.50 191.7516 231.8292 238.8612 2472118
q,=0.30,q,=0.60 184.1803 231.8292 238.8612 2472118
q,=0.30,q,=0.60 236.0869 231.8292 238.8612 2472118
q,=0.10,q,=0.10 97.9206 231.8292 238.8612 2472118
q,=0.10,q,=0.10 85.10731 231.8292 238.8612 2472118
q,=0.10,q,=0.20 100.8624 231.8292 238.8612 2472118
q,=0.10,q,=0.20 155.157 231.8292 238.8612 2472118
q,=0.10,q,=0.30 155.157 231.8292 238.8612 2472118
q,=0.10,q,=0.30 123.3245 231.8292 238.8612 2472118
q,=0.20,q,=0.20 113.3245 231.8292 238.8612 247.2118
q,=0.20,q,=0.20 147.3637 231.8292 238.8612 2472118
q,=0.20,q,=0.30 166.6306 231.8292 238.8612 2472118
q,=0.20,q,=0.30 157.8232 231.8292 238.8612 2472118
q,=0.30,q,=0.10 133.2772 231.8292 238.8612 2472118
q,=0.30,q,=0.10 131.2191 231.8292 238.8612 2472118
q,=0.10,q,=0.80 183.8584 231.8292 238.8612 2472118
q,=0.10,q,=0.80 218.8224 231.8292 238.8612 247.2118
q,=0.80,q,=0.10 203.6515 231.8292 238.8612 2472118
q,=0.80,q,=0.10 177.6116 231.8292 238.8612 2472118
q,=0.10,q,=0.40 144.1728 231.8292 238.8612 2472118
q,=0.10,q,=0.40 168.524 231.8292 238.8612 2472118
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Table continued...
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Parameters Deviance (0.95) (0.975) (0.99)
q,=0.70,q,=0.10 169.3248 231.8292 238.8612 2472118
q,=0.70,q,=0.10 177.8397 231.8292 238.8612 2472118
q,=0.60,q,=0.10 177.1335 231.8292 238.8612 2472118
q,=0.70,q,=0.10 197.0526 231.8292 238.8612 2472118
q,=0.50,q,=0.10 159.3473 231.8292 238.8612 247.2118
q,=0.50,q,=0.10 146.7018 231.8292 238.8612 2472118

The deviance we derived to test the parameters of the reduced
model works well as we see that all, but four of the values of the
deviances are greater than 7, (095). However, among these four values
of the deviances three are greater than z,,(0:95), but less than 23, (099)
So, it can be concluded that our derived deviance works well. On the
other hand, if most of the values of the deviances had a larger value
than our desired ;(2 value, then we had to conclude that our derived
deviance does not work in testing hypothesis regarding the parameters
of the reduced model.

Conclusion

In this paper, we addressed an important problem of inference
regarding bivariate geometric distribution and developed testing
procedure for the parameters of this distribution with and without
covariate information. Our method depends on deriving the deviance
statistics using maximum likelihood estimators (mle) of parameters.
Our mles of the parameters of the bivariate geometric distribution are
obtained using the conditional and the marginal distributions.

We conducted a numerical analysis based on simulated data
for the testing the identical parameter assumption for each pair of
observed data. Our numerical example did not consider any covariate
information. We found that without covariate information our derived
deviance worked well in most cases.
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