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Introduction
Many situations in real world cannot be described by a single 

variable. Simultaneous occurrence of multiple events warrants 
multivariate distributions. For instance, univariate geometric 
distribution can represent occurrence of failure of one component of a 
system. However, to study systems with several components that may 
have different types of failures, such as twin engines of an airplane or 
the paired organ in a human body, bivariate geometric distributions are 
suitable. Bivariate geometric distribution has increasingly important 
roles in various fields, including reliability and survival analysis. 
There are different forms of a bivariate geometric distribution. Phatak 
& Sreehari1 provided a form of the bivariate geometric distribution 
which is considered here. They introduced a form of probability 
mass function which take into consideration of three different types 
of events. There are other forms which can be seen in Nair & Nair,2 
Hawkes,3 Arnold et al.,4 and Sreehari & Vasudeva.5 Basu & Dhar6 
proposed a bivariate geometric model which is analogous to bivariate 
exponential model developed by Marshal & Olkin.7 Characterization 
results are developed by Sun & Basu,8 Sreehari,9 and Sreehari & 
Vasudeva.5

Omey & Minkova10 considered the bivariate geometric distribution 
with negative correlation coefficient and analyzed some properties, 
probability generating function, probability mass function, moments 
and tail probabilities. Krishna & Pundir,11 studied the plausibility of a 
bivariate geometric distribution as a reliability model. They derived 
the maximum likelihood estimators and Bayes estimators of the 
parameters and various reliability characteristics. They also compared 
these estimators using Monte-Carlo simulation.

In this paper, the parameters of a saturated model, reduced 
model and generalized linear model (glm) for a bivariate geometric 
distribution are estimated using the maximum likelihood method. 

We also derived deviances as the goodness of fit statistics for testing 
parameters corresponding to these models and deviance difference to 
compare two related models in order to determine which model fits 
the data well. Rest of the paper is organized as follows: Univariate 
Geometric Distribution, Bivariate Geometric Distribution, Maximum 
Likelihood Estimation, Hypothesis Testing, Data Simulation and 
Analysis and finally Conclusion.

Univariate geometric distribution
The probability mass function (pmf) of a random variable Y which 

follows a geometric distribution with probability of success p can be 
written as,

( ) ( )1 , 0,1, 2, ..    0 1,  0; 1 1.y p q pP Y y p p y= = < < < = −= <−
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The moment generating function can be given by,
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the mean and the variance of this distribution are
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An extension to the univariate geometric distribution is the 
bivariate geometric distribution which is discussed in the next section.

Bivariate geometric distribution
The joint probability mass function of a bivariate geometric 

distribution can be obtained by the product of a marginal and a 
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conditional distribution, introduced by Phatak & Sreehari.1 They 
considered a process from which the units could be classified as good, 
marginal and bad with probabilities 1

q , 2
q  and ( )1 23

1q q q= − −  
respectively. They proposed that the probability mass function of 
observing the first bad unit after several good and marginal units are 
passed as follows:

( ) ( )1 2 1 2
1 1 2 2 1 21 2 1 2

1
, 1 , , 0,1, 2, ...;

    y
y yy y

P Y y Y y q q q q y y
 +

= = = − − =  
 

   

     (1)

                                             1 2
0  1 q q< + <

.

Here 1
Y  and 2

Y  denote the number of good and marginal units 
respectively before the first bad unit is observed.

The marginal distribution of 1
Y  is a geometric distributions with 

probability of success 1 2

2

1
1
q q

q
 − −
  − 

, and can be written as follows, 
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The conditional distribution of 2
Y  given 1

Y  is
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                                                                                                      (3)  

The product of the marginal distribution of 1
Y  in equation (2) and 

the conditional distribution of 2
Y  given 1

Y  in equation (3) gives the 
mass function of bivariate geometric distribution in equation (1).

Maximum likelihood estimation
Estimation of parameters in the absence of regressors

In order to find the maximum likelihood estimators (mle)s from a 
saturated model (parameters are different for each pair of observations), 

it suffices to consider the likelihood functions based on the marginal 

and conditional mass functions. Let 1
, ....,

n
Y Y  be independent random 

vectors each having bivariate geometric distribution with different 
pairs of parameters ( )1 2,i iq q  for 1, 2, ...., .i n= .

The log likelihood function based on the conditional distribution 
of 2

Y  given 1
Y  can be written as follows using (3):
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1
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                                                                                                            (4)

Differentiating (4) with respect to 2i
q  and setting it equal to zero, 

we get the mle of  2i
q  as,
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The log likelihood function based on the marginal distribution of 
1

Y  from (2) is,
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         (6)

Differentiating (6) with respect to 1i
q  and setting it equal to zero, 

the mle of 1i
q  can be derived as,
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Here, 1
ˆ

i
q  and 2

ˆ
i

q
 are the maximum likelihood estimators of 1i

q  
and 2i

q , 1, ...,i n=  respectively under the saturated model.

Similarly the maximum likelihood estimators (mle)s from a 
reduced model (parameters are the same for each pair of observations) 
can be obtained as: 
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Where 1
q̂  and 2

q̂  are the maximum likelihood estimators of  1
q  

and 2
q  respectively under the reduced model.

Estimation of parameters in the presence of regressors: 

In the presence of regressors, one can employ a generalized linear 
model and hence estimate the parameters in terms of the estimated 
model parameters. The conditional distribution of 2

Y   given 1
Y  in (3) 

can be set as exponential family representation as follows,

      ( ) ( ) ( ){ } ( )1 2
2 2 1 1 2 2 1 2

1 2
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Here the natural parameter and the function of the natural 
parameter respectively are,

                                     2
  ln qθ =

                    ( ) ( ) ( )1 2    1 ln 1b y qθ = − + −

Thus the mean of the conditional distribution of 2
Y  given 1

Y  is
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A generalized linear model based on the conditional distribution of  

2
Y  given 1

Y  can be written as,

       
( ) 2 2
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∑= = = = >

Since, 2
Y  represents the number of trials before a certain event 

can occur it is considered as count response, the linear predictor can 
be written as the logarithm of the mean i

µ . Thus the conditional link 
function can be expressed as,
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Here, 2 j
β  is an element of the matrix 2

β  corresponding to the 
covariate 2ijx  which represents the effect of covariate to the mean 
responses through the link function  (  )

i
g µ  .

Differentiating (6) again with respect to 1i
q , setting it to zero and 

using (10) we get,
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Hypothesis testing
In order to test the identical parameter assumption across each pair 

of observed data, we derived deviance as a goodness of fit statistics. 
Additional deviance statistics are derived for generalized linear model 
(glm) to compare two nested glms.

Deviance for reduced model with identical parameter assumption

The log likelihood function for the saturated model can be written using (1) and the maximum likelihood estimates of the parameters 1i
q  

and 2i
q  from equations (5) and (7) respectively as follows,
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Similarly, the log likelihood function of the reduced model can be written using (1) and the maximum likelihood estimates of  1
q  and 2

q  
from equations (8) and (9) respectively as follows,
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Thus the deviance statistic for testing the identical parameter for each observed pair of data can be expressed as follows,
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     According to Dobson [12], 
I

D  follows a 2χ  distribution with ( )2 2n−  degrees of freedom.

Deviance for a GLM

The deviance statistic for the glm of interest can be written using (1) and the maximum likelihood estimates of 1i
q  and 2i

q  based on the 
glm from equations (10) and (11) respectively as follows,
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Thus the deviance can be expressed as follows
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According to Dobson [12], II
D  follows 2χ  distribution with ( )2n p−  degrees of freedom.

Comparison between two GLMs

In order to compare two nested generalized linear models, we consider the following hypotheses. The null hypothesis corresponding to a 
smaller model ( )0M  in terms of number of regression parameters is
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The alternative hypothesis corresponding to a bigger model (M1 with q < p < n) within which the smaller model is nested can be written as,
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We can test 0
H  against 1

H  using the difference of the deviance statistics. Here, ( )0 ;l b y  is used to denote the likelihood function corresponding 
to the model 

0
M  and ( )1;l b y  to denote the likelihood function corresponding to the model 1

M . Hence the deviance difference can be written as, 
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According to Dobson [12] this D∆  follows 2χ  distribution with 
p q−  degrees of freedom.

If the value of D∆  is consistent with the ( )
2

p q
χ

−  distribution we 
would generally choose the 0

M  corresponding to 0
H  because it 

is simpler. On the other hand, if the value of D∆  is in the critical 
region i.e., greater than the upper tail 100 %α×  point of the ( )

2

p q
χ

−  
distribution then would reject 0

H  in favor of  1
H  on the grounds that 

model 1
M  provides a significantly better description of the data.

Data simulation and analysis
To determine the efficiency of our derived deviances we need 

to have data with known parameters. However, we cannot generate 
data directly from bivariate geometric distribution using the available 
computer software packages. Krishna and Pundir suggested an 
algorithm based on a theorem given by Hogg et al.,13 to generate 
random numbers from bivariate geometric distribution. According 
to this, paired values can be generated from a bivariate geometric 
distribution using the following steps,

Step 1: Generate k random numbers from univariate geometric 

distribution with probability of success 1 2

2

1
1
q q

q
 − −
  − 

.

Step 2: Suppose that our generated random numbers from the 
geometric distribution are 1 2

, , ...,
k

x x x .

Step 3: Generate k random numbers ij
y , k times each from a 

negative binomial distribution with parameters 1
i

x +  and ( )21 q−  .

Step 4: These generated pairs are from the bivariate geometric 

distribution with parameters 1
q  and 2

q .

Deviance checking for reduced model
In this subsection, we use the following steps to check our derived 

deviance for the reduced model with identical values of parameters 
( )1 2,q q  for each observed pair of data.

Step 1: Assume some fixed values of 1
q  and 2

q .

Step 2: Generate k random numbers from univariate geometric 
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distribution with probability of success 1 2

2

1
1
q q

q
 − −
  − 

 using the assumed 
values of 1

q  and 2
q  from Step 1.

Step 3: Suppose that our generated random numbers from the 
geometric distribution are 1 2

, , ...,
k

x x x .

Step 4: Generate k random numbers ij
y , k times each from the 

negative binomial distribution with parameters 1
i

x +  and ( )21 q−  .

Step 5: The generated pairs are from the bivariate geometric 
distribution with parameters 

1
q  and 2

q .

Step 6: Estimate deviance which is derived in (14).

We take the values of 1
q  and 2

q  ranging from 0.10 to 0.90 and 
satisfying the constraint 

1 2
1q q+ < . We considered several values 

for the pair ( )1 2,q q and generate random pairs to observe the efficiency 
of our derived deviance under different parametric values. For each 
specified pairs of parameters ( )1 2,q q , we ran this experiment twice 
to see whether there is a change in our decision due to randomness. 
The values of the pair of parameters and the corresponding deviance 
values are tabulated as follows.

Table 1 Estimation of deviance for different parameters under consideration

Parameters Deviance              (0.95)                (0.975)                (0.99)

q1=0.30,q2=0.30 177.4164 231.8292 238.8612 247.2118

q1=0.30,q2=0.30 172.3071 231.8292 238.8612 247.2118

q1=0.30,q2=0.40 185.3107 231.8292 238.8612 247.2118

q1=0.30,q2=0.40 159.5293 231.8292 238.8612 247.2118

q1=0.30,q2=0.50 193.8942 231.8292 238.8612 247.2118

q1=0.30,q2=0.50 158.266 231.8292 238.8612 247.2118

q1=0.30,q2=0.60 223.1697 231.8292 238.8612 247.2118

q1=0.30,q2=0.60 193.667 231.8292 238.8612 247.2118

q1=0.40,q2=0.30 216.3456 231.8292 238.8612 247.2118

q1=0.40,q2=0.30 211.828 231.8292 238.8612 247.2118

q1=0.50,q2=0.30 148.1757 231.8292 238.8612 247.2118

q1=0.50,q2=0.30 254.3887 231.8292 238.8612 247.2118

q1=0.60,q2=0.30 239.3245 231.8292 238.8612 247.2118

q1=0.60,q2=0.30 215.4915 231.8292 238.8612 247.2118

q1=0.30,q2=0.50 232.1984 231.8292 238.8612 247.2118

q1=0.30,q2=0.50 191.7516 231.8292 238.8612 247.2118

q1=0.30,q2=0.60 184.1803 231.8292 238.8612 247.2118

q1=0.30,q2=0.60 236.0869 231.8292 238.8612 247.2118

q1=0.10,q2=0.10 97.9206 231.8292 238.8612 247.2118

q1=0.10,q2=0.10 85.10731 231.8292 238.8612 247.2118

q1=0.10,q2=0.20 100.8624 231.8292 238.8612 247.2118

q1=0.10,q2=0.20 155.157 231.8292 238.8612 247.2118

q1=0.10,q2=0.30 155.157 231.8292 238.8612 247.2118

q1=0.10,q2=0.30 123.3245 231.8292 238.8612 247.2118

q1=0.20,q2=0.20 113.3245 231.8292 238.8612 247.2118

q1=0.20,q2=0.20 147.3637 231.8292 238.8612 247.2118

q1=0.20,q2=0.30 166.6306 231.8292 238.8612 247.2118

q1=0.20,q2=0.30 157.8232 231.8292 238.8612 247.2118

q1=0.30,q2=0.10 133.2772 231.8292 238.8612 247.2118

q1=0.30,q2=0.10 131.2191 231.8292 238.8612 247.2118

q1=0.10,q2=0.80 183.8584 231.8292 238.8612 247.2118

q1=0.10,q2=0.80 218.8224 231.8292 238.8612 247.2118

q1=0.80,q2=0.10 203.6515 231.8292 238.8612 247.2118

q1=0.80,q2=0.10 177.6116 231.8292 238.8612 247.2118

q1=0.10,q2=0.40 144.1728 231.8292 238.8612 247.2118

q1=0.10,q2=0.40 168.524 231.8292 238.8612 247.2118

https://doi.org/10.15406/bbij.2016.04.00112


Tests of hypotheses for the parameters of a bivariate geometric distribution 249
Copyright:

©2016 Hossain et al.

Citation: Hossain F, Begum M. Tests of hypotheses for the parameters of a bivariate geometric distribution. Biom Biostat Int J. 2016;4(6):244‒249. 
DOI: 10.15406/bbij.2016.04.00112

Parameters Deviance              (0.95)                (0.975)                (0.99)
q1=0.70,q2=0.10 169.3248 231.8292 238.8612 247.2118

q1=0.70,q2=0.10 177.8397 231.8292 238.8612 247.2118

q1=0.60,q2=0.10 177.1335 231.8292 238.8612 247.2118

q1=0.70,q2=0.10 197.0526 231.8292 238.8612 247.2118

q1=0.50,q2=0.10 159.3473 231.8292 238.8612 247.2118

q1=0.50,q2=0.10 146.7018 231.8292 238.8612 247.2118

Table continued...

The deviance we derived to test the parameters of the reduced 
model works well as we see that all, but four of the values of the 
deviances are greater than 2

198
(0.95)χ . However, among these four values 

of the deviances three are greater than 2

198
(0.95)χ , but less than 2

198
(0.99)χ . 

So, it can be concluded that our derived deviance works well. On the 
other hand, if most of the values of the deviances had a larger value 
than our desired  2χ  value, then we had to conclude that our derived 
deviance does not work in testing hypothesis regarding the parameters 
of the reduced model.

Conclusion
In this paper, we addressed an important problem of inference 

regarding bivariate geometric distribution and developed testing 
procedure for the parameters of this distribution with and without 
covariate information. Our method depends on deriving the deviance 
statistics using maximum likelihood estimators (mle) of parameters. 
Our mles of the parameters of the bivariate geometric distribution are 
obtained using the conditional and the marginal distributions.

We conducted a numerical analysis based on simulated data 
for the testing the identical parameter assumption for each pair of 
observed data. Our numerical example did not consider any covariate 
information. We found that without covariate information our derived 
deviance worked well in most cases.
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