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Abbreviations
AUC, area under the curve; CV, cross-validation; GO, gene 

ontology; extra trees, extremely randomized trees; kNN, k-nearest 
neighbor; RF, random forests; RMA, robust multi-array analysis; 
ROC, receiver operating characteristic; SVM, support vector 
machines; SVM-RFE, support vector machines recursive feature 
elimination; SZ, schizophrenia

Introduction
Schizophrenia (SZ) is a serious psychiatric disease, with a complex 

genetic basis that affects around 1% of the population worldwide. 
The symptoms of the disease are divided into positive, negative 
and cognitive symptoms. Positive symptoms include hallucinations, 
delusions as well as disorganised speech and behaviour. Negative 
symptoms include anhedonia, social withdrawal, and lack of 
motivation and energy. Finally, cognitive symptoms involve cognitive 
dysfunctions of patients suffering from SZ. Pharmacological treatment 
of the disease mostly deals with the positive, psychotic symptoms of 
the disease, but does not improve cognitive and social dysfunction. 
Moreover, the etiology of SZ predicates upon a combination of 
genetic and environmental factors, probably in early life, that affect 
neurogenesis and neuronal plasticity.1 DNA microarray technologies 
enabling genome-wide gene expression profiling have been intensely 
exploited in the last decade, in order to promote the elucidation of the 
underlying biological mechanisms of SZ.2-5 These studies, through the 
high dimensional data that they yield, can prove to be very useful for 
the generation of diagnostic biomarker signatures in the management 
of SZ. The usefulness of these data is based on the fact that they 

may reveal several genes that act synergistically. Probably, the genes 
that present these synergistic effects with other genes cannot be 
associated with SZ on their own. The importance of the development 
of classification models in SZ is great as, at the moment, the diagnosis 
of the disease is based exclusively on the evaluation of the clinical 
symptoms after they have manifested. Despite much research effort, 
some of the most crucial questions regarding SZ have not been 
answered. The heterogeneity and the multi-factorial background of 
SZ suggest the study of this disease through statistical methods for the 
identification of patterns in the data. Differentially expressed genes 
occurring from microarray experiments can be utilized as classifying 
biomarkers gain and can reveal underlying genetic factors in relation 
to important psychiatric diseases, such as SZ.6

Classification includes two main methodological models: the 
supervised and the unsupervised model. In unsupervised learning, 
the instances are unlabeled and the aim is to discover useful classes.7 
Supervised learning includes instances with known labels. In this study, 
supervised methods are used.6 In supervised learning, the classes are 
first defined and then the aim is to build a classifier that can separate 
samples among the defined classes citation.8 The discrimination of 
the classes in this study is based on the gene expression profiles of 
the samples.

Algorithms

Support vector machines (SVM)

In SVM, good separation of classes is achieved by the hyper-
plane that has the largest distance to the nearest training data points 
of any class. The instances that are on the boundaries of the margin 
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Abstract

Schizophrenia is a complex psychiatric disease that is affected by multiple genes, 
some of which could be used as biomarkers for specific diagnosis of the disease. In 
this work, we explore the power of machine learning methodologies for predicting 
schizophrenia, through the derivation of a biomarker gene signature for robust 
diagnostic classification purposes. Postmortem brain gene expression data from the 
anterior prefrontal cortex of schizophrenia patients were used as training data for the 
construction of the classifiers. Several machine learning algorithms, such as support 
vector machines, random forests, and extremely randomized trees classifiers were 
developed and their performance was tested. After applying the feature selection 
method of support vector machines recursive feature elimination a 21-gene model was 
derived. Using these genes for developing classification models, the random forests 
algorithm outperformed all examined algorithms achieving an area under the curve 
of 0.98 and sensitivity of 0.89, discriminating schizophrenia from healthy control 
samples with high efficiency. The 21-gene model that was derived from the feature 
selection is suggested for classifying schizophrenic patients, as it was successfully 
applied on an independent dataset of postmortem brain samples from the superior 
temporal cortex, and resulted in a classification model that achieved an area under the 
curve score of 0.91. Additionally, the functional analysis of the statistically significant 
genes indicated many mechanisms related to the immune system.

Keywords: classification, schizophrenia, machine learning, gene expression, 
microarray studies, support vector machines, adaboost

Biometrics & Biostatistics International Journal 

Research Article Open Access

https://creativecommons.org/licenses/by-nc/4.0/
https://crossmark.crossref.org/dialog/?doi=10.15406/bbij.2016.04.00106&domain=pdf


Studying microarray gene expression data of schizophrenic patients for derivation of a diagnostic 
signature through the aid of machine learning 

183
Copyright:

©2016 Logotheti et al.

Citation: Logotheti M, Pilalisb E, Venizelosa N, et al. Studying microarray gene expression data of schizophrenic patients for derivation of a diagnostic signature 
through the aid of machine learning. Biom Biostat Int J. 2016;4(5):182‒199. DOI: 10.15406/bbij.2016.04.00106

and determine the position and the orientation of the hyperplane are 
called the support vectors.9 SVM have some mathematical attributes 
that make them advantageous for gene expression classification, such 
as their ability to deal with large feature spaces and their ability to 
recognise outliers.10

Extremely randomized trees (Extra Trees)

The Extra Trees classifier belongs to the tree classifier algorithms 
and is extremely randomized. Its difference from other tree algorithms 
lies in the way it is built. At the point where the algorithm seeks the 
the most discriminative thresholds for the separation of the samples 
of a node into two groups, random thresholds are drawn for each of 
the randomly-selected features. Then, the best randomly-generated 
threshold is chosen as the splitting rule.11

Random forests (RF)

The RF classification algorithm is based on an ensemble of 
classification trees. Each classification tree is developed with 
bootstrap sampling of the data and for each split a random subset of 
the variables is used. RF uses two approaches: bagging or bootstrap 
aggregation that combines unstable learners and random variable 
selection for building the tree. No pruning is applied on the trees, in 
order to achieve low-bias trees. Additionally, bagging and random 
variable selection create trees with low correlation. As a classification 
method in microarray studies, it gives good performances even with 
noisy predictive variables and for this reason, it doesn’t need gene 
pre-selection. Finally, good performance is not so dependent on fine-
tuning the parameters of the algorithm.12

Nearest neighbors

The k-nearest neighbors (kNN) algorithm is one of the most widely 
used and simplest methods among machine learning classification 
algorithms. In the training process, the kNN algorithm classifies an 
unlabeled instance based on the most common label of its k-neighbors 
in the training set. The distance metric that is used for the identification 
of the nearest neighbors affects the performance of the classifier.13-15

Adaboost

This classification algorithm boosts the performance of a simple 
classifier by combining a set of weak classifiers to a stronger learning 
algorithm. In this way, the weak classifiers have to perform only a 
little better than a random guessing, but the final combined classifier 
usually results in a good performance. In order to boost a weak 
classifier, it is forced to solve a series of learning problems. After 
every learning round, the examples are weighted and the importance 
of the ones that were falsely classified by the previous weak classifier 
is increased.16

Evaluation

In this specific study, cross-validation (CV) has been used as an 
evaluation method of the classifier. In n-fold CV, the training set is 
divided into n subsets. One after the other, one subset is used as a test 
subset for the trained classifier and the remaining n-1 subsets are used 
as the training subset.17 The performance of the different classification 
algorithms is evaluated through receiver operating characteristic 
(ROC) curves.18 In binary classification the outcomes can be labeled 
either as positive or negative. The true positive (also known as 
sensitivity or recall) rate refers to the proportion of positive samples 
that are correctly predicted as positive, whereas the false positive 

(also known as 1-specificity) rate refers to the proportion of negative 
examples that are incorrectly predicted as positive. The Y axis of the 
ROC curve represents the true positive rate and the X axis represents 
the false positive rate. The upper-left corner of the plot is the “ideal” 
point, as the true positive rate equals 1 and the false positive rate equals 
0. After constructing a ROC curve for each classifier, the area under 
the curve (AUC), defined as the area between the ROC curve and the 
X axis, is used for the prediction performance of each classifier. In this 
study, the ROC curve for each classifier is estimated using a 10-fold 
CV procedure and we compare the mean AUC occurring from each 
curve. A larger AUC usually means a better classifier.19 Other metrics 
for evaluating the performance of a classifier are precision, sensitivity 
and accuracy. Precision is the ability of the classifier to not label a 
sample that is negative as positive. As mentioned before, sensitivity 
equals to the proportion of positive samples that are correctly predicted 
as positive and, finally, accuracy is the number of correct predictions 
made divided by the total number of predictions made.20

Feature selection

Feature selection can prove to be very important, as it can reveal 
subsets of informative genes that can discriminate schizophrenics 
from healthy control subjects. There are three main feature selection 
methods: filter, wrapper, and embedded methods. Filter methods filter 
out features that, based on statistical methods, are not informative. 
Filter feature selection is performed before applying classification 
(e.g. Fisher criterion score). Wrapper methods (e.g. stepwise forward 
selection and stepwise backward selection) search for optimal feature 
subsets, and utilize a classifier in order to evaluate the predictive 
power of the feature subsets. Compared to the filter methods, 
wrapper methods are usually more computationally demanding; but, 
they also provide more accurate results.21 The embedded methods 
select features while building a model. Embedded techniques are 
more computationally efficient than wrapper methods. An example 
of embedded methods is support vector machines recursive feature 
elimination (SVM-RFE), which is also used in this study. SVM-RFE 
is based on an iterative method of setting aside the feature with the 
lowest weight for each prediction method, until the optimal subset of 
genes is left.22 

The aim of this study is to test if the microarray gene expression 
data from a postmortem brain dataset contain enough information 
for the classification of SZ. For this reason several classification 
algorithms have been tested and their performance has been evaluated.

Materials and methods
Data preprocessing and analysis

A dataset that includes brain postmortem gene expression 
data of 28 schizophrenic and 23 healthy control subjects, derived 
from Broadmann area 10 (anterior prefrontal cortex), accessible 
at NCBI GEO database23 with the accession number GSE 17612, 
was analyzed using the Bioconductor package ‘affy’24 through the 
R programming system.25 Gene expression profiles were generated 
using the Affymetrix HG-U133 Plus 2.0 GeneChip. In this study, the 
robust multi-array analysis (RMA) method was used, which performs 
background correction on the Affymetrix perfect match data, applies 
quantile normalization and then performs summarization of the probe 
set information using median polish.26 The limma (moderated t-test) 
Bioconductor package of R has been used towards the identification 
of differentially expressed genes among the two classes.27 Transcripts 
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were characterized as differentially expressed if their unadjusted 
p-value was less than 0.01. The differentially expressed genes were 
used as an input for the pathway analysis and gene prioritization as 
well as for the classification task.

Pathway analysis and gene prioritization

The differentially expressed genes were imported into the 
Bioinfominer web tool (available online: www.bioinfominer.com) 
for functional analysis based on established statistical tests and 
using different ontology databases, namely Gene Ontology (GO),28 
Reactome,29 Human Phenotype Ontology30 and MGI Mammalian 
Phenotype Ontology.31 In this way, significant biological mechanisms 
associated to the input data were revealed. The next part of the 
analysis included the identification and the prioritization of master 
regulatory genes, which represent hub nodes in the GO tree structure. 
These genes play a central role, as they are related to many distinct, 
cross-talking GO terms.32

Classification algorithms and parameter optimization

In this study, the following classification techniques for the 
discrimination of the two classes (SZ and healthy controls) have 
been used: SVM, Extra Trees, RF, AdaBoost, and kNN classification 
algorithms. The classification algorithms come with a set of parameters. 
In this study, the parameters of the utilized classifiers were optimized 
with a CV grid search. Using this exhaustive search for each classifier, 
this method selects those parameters that maximize the mean AUC 
score of the CV.33 For all the classification models developed in this 
paper, parameter optimization has been performed. All of the machine 
learning methods were implemented in scikit-learn.34

Feature selection 

The differentially expressed genes were used as the dataset for 
SVM-RFE method, in order to filter out the optimum informative 
feature set.35 Generally, SVM-RFE selects the minimum informative 
subset of features that separates classes, by progressively removing 
features that are not informative. This procedure has many rounds. At 
each round one gene is eliminated and an SVM classifier is trained 
based on the rest of the genes. That procedure is recursively repeated 
on the pruned sets until the number of features that present the best 
performance according to CV is reached.36 The reason for using SVM-
RFE is that we aim at developing a sensitive and specific classification 
algorithm, based on realistic clinical biomarkers, assaying a small 
number of genes.37

Data collection and classification of the independent 
test cohort

The second dataset (NCBI GEO accession number: GSE 21935) 
was used as an independent group of samples in order to examine if 
the final genes occurring from the feature selection can be used as 
biomarkers in SZ. For this reason, the 21-gene model was used as 
an input for testing if those genes can discriminate SZ samples from 
healthy control samples on this independent dataset. The classification 
task was applied on the normalized gene expression values of the 
dataset, also resulting from RMA. The dataset included samples from 
the Brodmann Area 22 (superior temporal cortex) of 23 schizophrenic 
patients and 19 healthy controls.

Model evaluation

ROC curve was mainly used in this study as a metric to evaluate 
the output quality of each classification model, created from the 10-

fold CV. Each of the 10 different splits of the dataset generated by the 
10-fold CV results in a curve. Taking all of these curves, the mean 
AUC of each classifier is calculated. A classifier with larger mean 
AUC is considered to have better performance. Other metrics were 
also used as evaluation criteria for the performance of the classifiers, 
including accuracy, precision, and sensitivity.

Results
Differentially expressed genes

Applying the criteria described above (see Data preprocessing and 
analysis in Materials and Methods), the microarray output showed 
that 164 genes were differentially expressed in schizophrenic patients 
compared to the healthy controls (Supplementary Table 1). 

Pathway analysis and gene prioritization

The differentially expressed genes of (Supplementary Table 1) were 
submitted to the Bioinfominer web application for the elucidation of 
the overrepresented GO terms, Reactome pathways, Human Phenotype 
Ontology terms, and MGI Mammalian Phenotype Ontology terms. 
The full results are presented in (Supplementary Tables 2-5). The 
hub genes resulting from the gene prioritization corresponding to GO 
enrichment analysis are presented in (Supplementary Table 6).

Parameter optimization		

A grid search was performed for the classifiers that used the 
expression values of the differentially expressed genes of the study. 
The parameters of each developed classification algorithm that 
were subjected to grid search through CV, as well as their final 
values that optimize their corresponding classifiers are presented in 
(Table 1). A grid search was also applied for the classifiers that were 
developed based on the genes that occurred from the feature selection 
(Supplementary Table 7) and for the classifiers developed for the 
testing dataset (Supplementary Table 8).

Classifier performance, feature selection 

Classification algorithms, based on three datasets were developed. 
The first dataset contained the gene expression values of the 
differentially expressed genes from the training data (GSE 17612), the 
second dataset contained gene expression values of the 21 genes that 
occurred after the feature selection and the third dataset included the 
21 genes also obtained from the SVM-RFE, with their corresponding 
gene expression values obtained from the independent test data (GSE 
21935). 

More specifically, in the context of the classification task: SZ vs 
healthy controls, classification algorithms that used the differentially 
expressed genes as input were compared. According to the mean AUC 
of the ROC curve, the SZ samples can be distinguished from healthy 
controls on the basis of gene expression. Figures 1 and 2 show the 
ROC curves response of 10-fold CV for the developed classifiers 
that used the differentially expressed genes and the genes resulting 
from the feature selection as an input, respectively. More specifically, 
(Figures 1a-1e) compare the classification techniques of SVM, Extra 
Trees classifiers, RF, kNN, and AdaBoost. The AdaBoost method, 
yielding a CV AUC of 0.95, generally outperforms the other tested 
classification techniques. Mean precision, accuracy, and sensitivity 
of each developed classifier are also presented in (Supplementary 
Table 9). In this study, the SVM-RFE with stratified CV was used 
in order to find the ranks and the optimal number of features for 
classifying SZ. Among the 164 differentially expressed genes, the 
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maximal classification performance was achieved with 21 genes 
(Table 2). Then, each classifier incorporated genes that occurred 
from SVM-RFE. The 21-gene model for each classifier was validated 
using 10-fold CV. The final achieved mean AUC scores of all tested 
classification methods using the 21-gene model as input are presented 
in (Figures 2a-2e). The best performance was achieved by the RF 

classifier, which achieved a mean AUC of 0.98. The 21-gene model 
was also used for developing classifiers on an independent dataset, 
based on the gene expression values obtained from the analysis of this 
specific dataset. The performance metrics of these classifiers are also 
presented in (Supplementary Table 9). The RF classifier resulted in 
the best mean AUC score of 0.91. 

Table 1 Exhaustive grid search results for developed classification algorithms based on the 164 differentially expressed genes of the training dataset. Possible 
combinations of the parameter values are evaluated and the best combination is presented for each tested classification algorithm (RF, Extra Trees, kNN, 
AdaBoost, SVM)

RF Extra trees kNN Adaboost SVM

Parameter Optimal Value Parameter Optimal 
Value

Parameter Optimal 
value

Parameter Optimal 
value

Parameter Optimal 
value

Criterion gini Criterion gini N_neighbors 5 N_estimators 500 kernel linear

Max_features 3.16 Max_features 3.16 P 1

Learning rate 1 C 1000

N_estimators 10 N_estimators 10 weights uniform

RF parameters: Criterion: the function to measure the quality of a split; gini corresponds to the Gini impurity. 
Max_features: the number of features to consider when looking for the best split.
N_estimators: the number of trees in the forest.
Extra Trees parameters: Criterion. Max_features N_estimators as described for RF.
kNN parameters: N_neighbors: number of neighbors to use.
P: power parameter for the Minkowski metric; p=1 is equivalent to using manhattan distance.
Weights: weight function used in prediction; in uniform weights all points in each neighborhood are weighted equally.
AdaBoost parameters: N_estimators: the maximum number of estimators at which boosting is terminated. Learning rate: Learning rate at which the 
contribution of each classifier shrinks.
SVM parameters: Kernel: specifies the kernel type to be used in the algorithm.
 C: penalty parameter C of the error term.

Discussion
The top ranked biological processes resulting from the 

Bioinfominer tool includes calcium mediated signaling (CCL3, 
ALMS1, LAT2) (Supplementary Table 2). The Ca2+ signaling pathway 
is a major component of the mechanisms that regulate neuronal 
excitability, information processing, and cognition. Differences in 
gene transcription related to calcium signaling can prove to be very 
important, as they may lead to alterations in the neuronal signaling. 
Abnormalities of the Ca2+ signaling pathway have been related to the 
development of SZ as well as  of bipolar disorder.38 In addition there 
are findings that suggest that calcium is capable of inducing structural 
and cognitive deficits observed in SZ.39 The Reactome pathway 
analysis (Supplementary Table 3) resulted in FCGR activation (SYK, 
HCK, FCGR3A), classical antibody-mediated complement activation 
(C1QC, C1QB), complement cascade (CD59, C1QC, C1QB), and 
Fcgamma receptor dependent phagocytosis (SYK, HCK, DOCK1, 
FCGR3A), which are all clustered to innate immune system. The 
MGI Mammalian Phenotype Ontology analysis resulted in abnormal 
neutrophil morphology (S100A9, ITGA), abnormal neutrophil 
physiology (SYK, HCK, ITGAM, S100A9), and abnormal lymphatic 
vessel morphology (VEGFA, SYK, GJB2), which are all related to 
immune system phenotype (Supplementary Table 4). Finally, as 

shown in (Supplementary Table 5), the Human Phenotype Ontology 
analysis results in abnormalities related to the immune system, such 
as decreased serum complement C4b (C1QB and C1QC), Hashimoto 
thyroiditis (CIQB, CIQC) and increased antibody level in the blood 
(DSP, FAM13A and SAMHD1). These findings are in accordance to 
other schizophrenic studies. In a postmortem study of schizophrenic 
patients, the immune-related pathway has been reported to be involved 
in the pathology of SZ. In the same study, arachidonic acid cascade 
markers were found to have increased.40 A gene expression study on 
peripheral blood mononuclear cells identified differentially expressed 
genes related to the immune pathways in schizophrenic patients.41 
Another SZ study of microarray data on Broadmann Area 22 reports 
a decrease of neuroinflammation related pathways, which may result 
to cognitive impairment and progression of SZ disease.42 Finally, the 
enrichment analysis of MGI Mammalian Phenotype Ontology terms 
(Supplementary Table 4) revealed another important term, namely 
abnormal central nervous system synaptic transmission (LZTS1, 
TRIB2, TNC, CSPG5). Many published SZ studies suggest there is an 
altered expression of presynaptic proteins. Anatomical and functional 
synaptic abnormalities probably contribute to the pathology and 
symptomatology of the disease, but synaptic disturbances are most 
likely to be a part of a complex network of events leading to the 
expression of the disease.43 
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Table 2 Genes that occurred after the SVM-RFE feature selection and could discriminate the postmortem samples of SZ and healthy control subjects based on 
the differentially expressed genes of the GSE 17612 dataset

Gene symbol Gene title p-value

ARHGAP25 Rho GTPase activating protein 25 0.006071

GHR growth hormone receptor 0.007136

CCL3 C-C motif chemokine ligand 3 0.006522

RPS6KA2 ribosomal protein S6 kinase A2 0.003058

CRYBG3 crystallin beta-gamma domain containing 3 0.002981

COX4I1 cytochrome c oxidase subunit 4I1 0.001857

KDM3A lysine demethylase 3A 0.004227

LOC728613 programmed cell death 6 pseudogene 0.002835

CCNA2 cyclin A2 0.006075

S100A8 S100 calcium binding protein A8 0.000122

COX19 COX19 cytochrome c oxidase assembly factor 0.000137

MIR210HG MIR210 host gene 0.002779

LOC100134317 hypothetical LOC100134317 0.009156

LONRF3 LON peptidase N-terminal domain and ring finger 3 0.006143

GSTM3 glutathione S-transferase mu 3 (brain) 0.005909

VCPIP1 valosin containing protein (p97)/p47 complex interacting protein 1 0.006035

GJB2 gap junction protein beta 2 0.000687

LCOR ligand dependent nuclear receptor corepressor 0.001645

MRS2 MRS2, magnesium transporter 0.0075

NAA38 N(alpha)-acetyltransferase 38, NatC auxiliary subunit 0.004166

ANKRD37 ankyrin repeat domain 37 0.006384

The Reactome analysis also resulted in signaling by retinoic acid 
including the genes CYP26B1, ALDH1A3 CRABP1, and ALDH1A1 
(Supplementary Table 3). Retinoid dysfunction may be also involved 
in the pathophysiology of SZ. CYP26B1 and ALDH1A3 as well as 
other genes involved in the synthesis and transportation of retinoic 
acid are implicated in SZ [40]. The functional analysis also detected an 
integrin-mediated signaling pathway among the GO terms represented 
by the genes SYK, HCK, DOCK1, and ITGAM (Supplementary 
Table 2). The antipsychotic agent penfluridol has been reported to act 
through inhibition of the integrin signaling.44

Using supervised methods, we concluded that SZ can be classified 
by postmortem gene expression, even without applying any feature 
selection method, achieving an AUC score of 0.95 (Figure 1d) and 
sensitivity of 0.96 (Supplementary Table 9) with the use of the 
AdaBoost algorithm. Other classification algorithms also performed 
well, such as SVM with AUC 0.93 (Figure1a), accuracy 0.94, 
precision 0.97, and sensitivity 0.93 (Supplementary Table 9). SVM-
RFE feature selection concluded to 21 genes and with their gene 
expression values a RF classifier was developed with 0.98 AUC score 

(Figure 2c). Additionally, the good performances of the classification 
models after applying the 21-gene model on the testing set supports 
the generalization of the 21-gene model to a test dataset, independent 
from the samples included in the model construction, with final 
AUC performance of 0.91 and 0.85 sensitivity, achieved by the RF 
classification model (Supplementary Table 9).

The 21 genes after the SVM-RFE feature selection (Table 2) 
reported in this study could be considered a candidate biomarker 
set for the diagnosis of SZ, to serve as a starting point for its further 
validation. As shown in (Supplementary Table 1), the genes rendering 
from the feature selection do not present high fold changes. There 
are other studies supporting that top-ranked genes may lose essential 
information specifically for classification purposes because of the fact 
that they are usually highly correlated.7,45 Therefore, we considered 
that it is reasonable for the feature selection algorithms to identify 
statistically significant genes with small fold changes as predictors for 
classification. Among the 21 genes, S100A8 and CCL3 genes have 
been previously associated to SZ.46,47 The S100A8 gene encodes a 
member of the S100 protein family. S100 proteins are involved in many 
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cellular processes, such as cell cycle progression and differentiation. 
This specific protein acts as cytokine [provided by RefSeq]. The 
S100A8 gene also presents the greatest fold change among the 
upregulated genes of the study (Supplementary Table 1). The S100A8 
gene dimerizes with the S100A9 gene, which was also shown to be 
differentially expressed in this study (Supplementary Table 1). This 
dimerization forms calprotectin, which is involved in innate immunity 
and inflammation. S100A8 is also reported to be upregulated at the 
protein level in another schizophrenic study.47 The CCL3 gene 
encodes a small inducible cytokine. Through binding to CCR1, 

CCR4 and CCR5 receptors, it participates in inflammatory responses 
[provided by RefSeq]. Chemokines are associated to neurobiological 
mechanisms, such as neurogenesis regulation or neurotransmitter-
like effects, probably implicated in psychiatric disorders. It has been 
reported that many chemokines, including CXCL8 (IL-8), CCL2, 
CCL3 and CCL5, have been non-specifically associated to psychiatric 
diseases.48 All the aforementioned genes of the 21-gene model were 
also included in the hub genes list (Supplementary Table 6) resulted 
from the gene prioritization.

                                                              (a)							       (b)

   				      (c)						              (d)

							       (e)
Figure 1 ROC curve analysis for the evaluation of the classification of SZ versus healthy controls after testing different classification algorithms: (a) SVM; (b) 
Extra Tree Classifiers; (c) RF; (d) AdaBoost; (e) kNN. The figure shows the ROC response of different classifiers, created from 10-fold CV. With the help of the 
ten occurring curves from each classification algorithm, the mean AUC for each algorithm is also calculated and presented in the figures as the crooked line in 
every case (Mean ROC).
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				    (a)							       (b)

				    (c)							       (d)

Figure 2 ROC curve analysis for the evaluation of the classification of SZ versus healthy controls after the SVM-RFE feature selection. The figures depict the 
evaluation results of the ROC analysis with five different algorithms: (a) SVM; (b) Extra Trees Classifiers; (c) RF; (d) Adaboost and (e) kNN. The figure shows the 
ROC response of different classification algorithms, created from 10-fold CV. With the help of the ten occurring curves from each classification algorithm, the 
mean AUC for each algorithm is also calculated and presented in the figures as the crooked line in every case (Mean ROC).

It is also worth mentioning that genes RPS6KA2 and CCNA2 
are involved in the Reactome pathway of (R-HSA-2559582), which 
is also known as senescence messaging secretome. Oxidative stress 
can induce DNA damage, and the persistent DNA damage may be 
a senescence-associated secretory phenotype initiator.49 Generally, 
cellular senescence and apoptosis (programmed cell death) are 
ways to control DNA damage and exacerbation of those processes 
has been previously related SZ.50 Another hub gene included in the 

differentially expressed gene list is SYK (Supplementary Table 6), 
which is a member of the non-receptor type tyrosine protein kinases 
family. The encoded protein participates in coupling activated 
immunoreceptors to downstream signaling events that facilitate 
various cellular responses, such as proliferation, differentiation, and 
phagocytosis [provided by RefSeq]. It is considered to modulate 
epithelial cell growth. SYK was also identified to be upregulated 
in a study that examines the involvement of the immune system in 
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the etiology of SZ.40 Finally, the differentially expressed hub gene 
VEGFA encodes a vascular endothelial growth factor A. This growth 
factor is involved in neurotrophy and neurogenesis, both possibly 
implicated in the pathophysiology of SZ. However, a study on the 
Hann Chinese population found no significant associations between 
different haplotypes of VEGFA and the risk of SZ.51 

Conclusion 

This study revealed 164 genes that were statistically significant. 
Furthermore, among the differentially expressed genes, CCL3, 
S100A8, SYK and VEGFA have been previously implicated in SZ and 
other psychiatric diseases. The main identified statistically significant 
ontological terms of interest that have been previously related to SZ 
are immune-related mechanisms. Other interesting mechanisms have 
also been found to be overrepresented, such as central nervous system 
synaptic transmission, integrin mediated signaling and retinoic acid 
signaling. In this study, the importance of the integrated feature 
selection and classification algorithm for the prediction of classes 
and for the identification of significant genes have been revealed once 
more.52 In summary, RF after the feature selection method of SVM-
RFE outperformed the other tested classification methods with an 
AUC score of 0.98. The feature selection resulted to 21 genes that 
could discriminate schizophrenic and healthy control samples in two 
different independent datasets of postmortem brain samples obtained 
from two different brain regions.
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Supplementary Table 1 The list of 164 differentially expressed genes identified after comparing the gene expression of healthy control and SZ samples and 
applying a p-value cut-off ≤ 0.01

Gene symbol Gene title Fold change 
(log2) p-value

S100A8 S100 calcium binding protein A8 1.82649717 0.000122

C1QB complement component 1, q subcomponent, B chain 0.73108089 0.005022

S100A9 S100 calcium binding protein A9 0.66209828 0.004514

C1QC complement component 1, q subcomponent, C chain 0.64386268 0.008943

FCGR3A Fc fragment of IgG receptor IIIa 0.5571018 0.005952

BAG3 BCL2 associated athanogene 3 0.53718831 0.006337

SLC16A3 solute carrier family 16 member 3 0.48248169 0.007186

FCGR3B Fc fragment of IgG receptor IIIb 0.44658577 0.005075

ALOX5AP arachidonate 5-lipoxygenase activating protein 0.38970751 0.005349

RNASET2 ribonuclease T2 0.37009181 0.003478

ANKRD37 ankyrin repeat domain 37 0.35263119 0.006384

HK2 hexokinase 2 0.34876651 0.001683

VEGFA vascular endothelial growth factor A 0.33661983 0.005811

HCK HCK proto-oncogene, Src family tyrosine kinase 0.33513209 0.00693
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Gene symbol Gene title Fold change 
(log2) p-value

DOCK8 dedicator of cytokinesis 8 0.3334688 0.00656

APBB1IP amyloid beta precursor protein binding family B member 1 interacting protein 0.32000077 0.008019

DIS3L2 DIS3 like 3'-5' exoribonuclease 2 0.28118603 0.009462

CD59 CD59 molecule 0.27947727 0.009546

SAMHD1 SAM domain and HD domain 1 0.27388725 0.004751

ACVRL1 activin A receptor like type 1 0.2697881 0.003338

LAT2 linker for activation of T-cells family member 2 0.24203936 0.002806

ITGAM integrin subunit alpha M 0.24091813 0.005904

SYK spleen tyrosine kinase 0.24009321 0.00638

P4HA1 prolyl 4-hydroxylase subunit alpha 1 0.2375438 0.00403

MIR100HG mir-100-let-7a-2 cluster host gene 0.23017832 0.006184

MIR210HG MIR210 host gene 0.2155124 0.002779

KDM3A lysine demethylase 3A 0.21378786 0.004227

GSTM3 glutathione S-transferase mu 3 (brain) 0.21222917 0.005909

LONRF3 LON peptidase N-terminal domain and ring finger 3 0.20865663 0.006143

CRYBG3 crystallin beta-gamma domain containing 3 0.20282956 0.002981

LCOR ligand dependent nuclear receptor corepressor 0.19836956 0.001645

AKAP12 A-kinase anchoring protein 12 0.19652621 0.001368

ARID5B AT-rich interaction domain 5B 0.19459857 0.00905

CCDC69 coiled-coil domain containing 69 0.19234923 0.001352

SMAD7 SMAD family member 7 0.18979166 0.003705

IGF1R insulin like growth factor 1 receptor 0.18640289 0.009458

APOC2 apolipoprotein C-II 0.18311411 0.002289

NAA38 N(alpha)-acetyltransferase 38, NatC auxiliary subunit 0.1829926 0.004166

PAPD5 PAP associated domain containing 5 0.18204628 0.008159

JAKMIP2 janus kinase and microtubule interacting protein 2 0.17846675 0.005588

MRS2 MRS2, magnesium transporter 0.17714441 0.0075

GHR growth hormone receptor 0.17616954 0.007136

C2CD2 C2 calcium-dependent domain containing 2 0.17009949 0.00975

COX19 COX19 cytochrome c oxidase 0.16422962 0.000137

assembly factor

SNRNP48 small nuclear ribonucleoprotein U11/U12 subunit 48 0.16357351 0.009062

MOB1A MOB kinase activator 1A 0.16338902 0.007832

ARHGAP25 Rho GTPase activating protein 25 0.16131619 0.006071

COX4I1 cytochrome c oxidase subunit 4I1 0.15580507 0.001857

ABCD4 ATP binding cassette subfamily D member 4 0.15032984 0.006105

ST3GAL1 ST3 beta-galactoside alpha-2,3-sialyltransferase 1 0.14706143 0.009269

RPS6KA2 ribosomal protein S6 kinase A2 0.14666215 0.003058

SOAT1 sterol O-acyltransferase 1 0.14069184 0.006413

Table Continued
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Gene symbol Gene title Fold change 
(log2) p-value

ZC3H18 zinc finger CCCH-type containing 18 0.13836437 0.002404

MAX MYC associated factor X 0.13176022 0.008971

RGS19 regulator of G-protein signaling 19 0.13170526 0.005579

DKK1 dickkopf WNT signaling pathway inhibitor 1 0.13138221 0.006626

GTF2A2 general transcription factor IIA 2 0.12594606 0.008314

HSBP1L1 heat shock factor binding protein 1-like 1 0.12215011 0.005242

C1GALT1C1 C1GALT1 specific chaperone 1 0.12188569 0.007076

CASP6 caspase 6 0.12106434 0.00282

SLC4A2 solute carrier family 4 member 2 0.11859651 0.006411

VCPIP1 valosin containing protein (p97)/p47 complex interacting protein 1 0.11499142 0.006035

CCNA2 cyclin A2 0.10649764 0.006075

FBXO42 F-box protein 42 0.10227309 0.007903

LOC284009 hypothetical LOC284009 0.0992991 0.0068

ZNF202 zinc finger protein 202 0.09919633 0.005258

KHDC1 KH homology domain containing 1 0.09373654 0.008083

RPS6KB1 ribosomal protein S6 kinase B1 0.09108946 0.007656

TMEM184C transmembrane protein 184C 0.09047685 0.003114

FHAD1 forkhead-associated (FHA) phosphopeptide binding domain 1 -0.0868906 0.005764

PRKRIP1 PRKR interacting protein 1 (IL11 inducible) -0.0877571 0.002776

DOCK1 dedicator of cytokinesis 1 -0.0919423 0.00703

FAM13A family with sequence similarity 13 member A -0.0941148 0.006757

CHMP6 charged multivesicular body protein 6 -0.0953008 0.009337

ZNF777 zinc finger protein 777 -0.0958465 0.007735

FAM204A family with sequence similarity 204 member A -0.0961403 0.009096

LOC440867 uncharacterized LOC440867 -0.1024177 0.003157

ANAPC13 anaphase promoting complex subunit 13 -0.1046875 0.009113

CORIN corin, serine peptidase -0.1056187 0.003811

TMEM239 transmembrane protein 239 -0.1066623 0.008018

VIPR2 vasoactive intestinal peptide receptor 2 -0.1084358 0.004582

TEX264 testis expressed 264 -0.1095848 0.001421

ZNF18 zinc finger protein 18 -0.1107995 0.003814

HSD17B8 hydroxysteroid (17-beta) dehydrogenase 8 -0.1109382 0.008904

JMJD4 jumonji domain containing 4 -0.1130027 0.005253

BROX BRO1 domain and CAAX motif containing -0.1140799 0.003452

CCS copper chaperone for superoxide dismutase -0.1154503 0.000723

ATP1A4 ATPase Na+/K+ transporting subunit alpha 4 -0.1158428 0.006439

EXOSC9 exosome component 9 -0.116022 0.001765

LOC100506459 uncharacterized LOC100506459 -0.1198351 0.003974

TSEN15 tRNA splicing endonuclease subunit 15 -0.1200272 0.007396

DMKN dermokine -0.1207084 0.004637

Table Continued
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Gene symbol Gene title Fold change 
(log2) p-value

C3orf35 chromosome 3 open reading frame 35 -0.12101 0.001778

WDR86 WD repeat domain 86 -0.1227062 0.008758

SMURF1 SMAD specific E3 ubiquitin protein ligase 1 -0.1244752 0.00463

FAM173A family with sequence similarity 173 member A -0.1247547 0.008634

LOC730098 hypothetical LOC730098 -0.1253896 0.002728

IFT27 intraflagellar transport 27 -0.126053 0.004584

SAPCD1 suppressor APC domain containing 1 -0.1288511 0.004477

LINC00900 long intergenic non-protein coding RNA 900 -0.1307883 0.007456

LRRN4CL LRRN4 C-terminal like -0.1307926 0.002182

JAG1 jagged 1 -0.1311909 0.003896

C17orf97 chromosome 17 open reading frame 97 -0.1312053 0.006676

PNLDC1 PARN like, ribonuclease domain containing 1 -0.1318857 0.001077

CHCHD5 coiled-coil-helix-coiled-coil-helix domain containing 5 -0.1318954 0.009292

PEX10 peroxisomal biogenesis factor 10 -0.1330601 0.00123

PRR5L proline rich 5 like -0.1359154 0.004642

PARGP1 poly(ADP-ribose) glycohydrolase pseudogene 1 -0.1369147 0.008385

ZFP2 ZFP2 zinc finger protein -0.1396819 0.00489

ADGRA1 adhesion G protein-coupled receptor A1 -0.1420824 0.006006

IGLV1-44 immunoglobulin lambda variable 1-44 -0.1424417 0.009018

MSANTD1 Myb/SANT DNA binding domain containing 1 -0.1435871 0.009775

WSB1 WD repeat and SOCS box containing 1 -0.1461526 0.000747

LZTS1 leucine zipper, putative tumor suppressor 1 -0.1479398 0.007089

ALMS1 ALMS1, centrosome and basal body associated protein -0.1483872 0.00191

SOHLH2 spermatogenesis and oogenesis specific basic helix-loop-helix 2 -0.1495143 0.002074

ACOX3 acyl-CoA oxidase 3, pristanoyl -0.1497299 0.006074

ICA1 islet cell autoantigen 1 -0.1520765 0.000761

AMFR autocrine motility factor receptor -0.157991 0.005319

ALDH1A3 aldehyde dehydrogenase 1 -0.1580397 0.003569

family member A3

PCDHA1 protocadherin alpha 1 -0.1616883 0.008645

COL12A1 collagen type XII alpha 1 -0.1624951 0.006727

FMOD fibromodulin -0.1682213 0.00679

LOC440896 hypothetical LOC440896 -0.1692409 0.006958

PXDN peroxidasin -0.1700568 0.002642

ADAMTS8 ADAM metallopeptidase with thrombospondin type 1 motif 8 -0.1713025 0.003075

LYRM4 LYR motif containing 4 -0.1808278 0.000795

CSPG5 chondroitin sulfate proteoglycan 5 -0.1823952 0.008227

MTG2 mitochondrial ribosome-associated GTPase 2 -0.1827759 0.008865

SPAG6 sperm associated antigen 6 -0.1827796 0.003408

Table Continued
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Gene symbol Gene title Fold change 
(log2) p-value

IGFBP6 insulin like growth factor binding protein 6 -0.1859001 0.004757

PDCD6 programmed cell death 6 -0.1912033 0.000818

SLC22A8 solute carrier family 22 member 8 -0.192731 0.007573

LOC100134317 hypothetical LOC100134317 -0.1974936 0.009156

SETD9 SET domain containing 9 -0.2060151 0.008609

FLRT1 fibronectin leucine rich transmembrane protein 1 -0.2060696 0.001075

GPCPD1 Glycerophosphocholine -0.2067034 0.006461

phosphodiesterase 1

SLC6A20 solute carrier family 6 member 20 -0.2090165 0.002204

PEX7 peroxisomal biogenesis factor 7 -0.2100343 0.001087

TRIB2 tribbles pseudokinase 2 -0.2116417 0.001142

RASGRP1 RAS guanyl releasing protein 1 -0.2127558 0.005429

TNC tenascin C -0.2135083 0.002824

AHSA2 AHA1, activator of heat shock 90kDa protein ATPase homolog 2 (yeast) -0.2223365 0.007083

ADTRP androgen dependent TFPI regulating protein -0.2310652 0.008219

AGA aspartylglucosaminidase -0.240033 0.006235

MPPED2 metallophosphoesterase domain containing 2 -0.2474596 0.001065

CA4 carbonic anhydrase 4 -0.2483552 0.003805

ARMCX4 armadillo repeat containing, X-linked 4 -0.2518212 0.000947

SPON2 spondin 2 -0.254678 0.003923

C1orf95 chromosome 1 open reading frame 95 -0.2738358 0.009582

ECM2 extracellular matrix protein 2 -0.2844704 0.006839

TYRP1 tyrosinase-related protein 1 -0.296184 0.003082

PHLDB2 pleckstrin homology like domain family B member 2 -0.3201603 0.009663

ALDH1A1 aldehyde dehydrogenase 1 family member A1 -0.3254277 0.007148

CYP26B1 cytochrome P450 family 26 subfamily B member 1 -0.3257775 0.000915

CRABP1 cellular retinoic acid binding protein 1 -0.3784878 0.003868

SLC13A4 solute carrier family 13 member 4 -0.3876823 0.001843

CCL3 C-C motif chemokine ligand 3 -0.4024027 0.006522

FRZB frizzled-related protein -0.515621 0.001186

FRMPD2 FERM and PDZ domain containing 2 -0.5236301 0.001204

GJB2 gap junction protein beta 2 -0.5305406 0.000687

LOC728613 programmed cell death 6 pseudogene -0.6624631 0.002835

DSP desmoplakin -0.7005118 0.009817

OGN osteoglycin -0.804669 0.002176

Table Continued
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Supplementary Table 2 Overrepresented GO terms occurring from the enrichment analysis of the differentially expressed genes (category Biological 
Process). The ranking of statisticallysignificant terms is according to the corrected p-value

Rank Term id Term definition Enrichment Hypergeometric 
p-value

Corrected 
p-value

1 GO:0046324 regulation of glucose import 2/7 2.27E-03 2.90E-03

2 GO:0001816 cytokine production 3/26 2.57E-03 7.00E-03

3 GO:0009060 aerobic respiration 3/28 3.18E-03 8.80E-03

4 GO:0042339 keratan sulfate metabolic process 3/32 4.67E-03 0.0117

5 GO:0016558 protein import into peroxisome matrix 2/10 4.76E-03 0.0174

6 GO:0030593 neutrophil chemotaxis 4/65 5.08E-03 0.0196

7 GO:0030199 collagen fibril organization 3/38 7.58E-03 0.0217

8 GO:0038083 peptidyl-tyrosine autophosphorylation 3/39 8.15E-03 0.0244

9 GO:0030514 negative regulation of BMP signaling pathway 3/42 1.00E-02 0.0271

10 GO:0038096 Fc-gamma receptor signaling pathway involved 
in phagocytosis

4/82 0.0119 0.0291

11 GO:0007229 integrin-mediated signaling pathway 4/84 0.0124 0.0341

12 GO:0071407 cellular response to organic cyclic compound 4/86 0.0134 0.0373

13 GO:0019722 calcium-mediated signaling 3/51 0.0169 0.0423

14 GO:0032760 positive regulation of tumor necrosis factor 
production

3/48 0.0144 0.0438

15 GO:0019370 leukotriene biosynthetic process 2/29 0.0206 0.0477

16 GO:0051090 regulation of sequence-specific DNA binding 
transcription factor activity 2/22 0.0225 0.0498

Supplementary Table 3 Overrepresented Reactome pathways occurring from the enrichment analysis of the differentially expressed genes. The ranking of 
statistically significant terms is according to the corrected p-value

Rank Term id Term Definition Enrichment Hypergeometric 
p-value

Corrected 
p-value

1 R-HSA-5365859 RA biosynthesis pathway 4/22 3.22E-05 3.10E-03

2 R-HSA-5362517 Signaling by Retinoic Acid 4/42 4.31E-04 9.00E-03

3 R-HSA-2029481 FCGR activation 3/19 5.19E-04 0.0123

4 R-HSA-354192 Integrin alphaIIb beta3 signaling 3/25 1.19E-03 0.0171

https://doi.org/10.15406/bbij.2016.04.00106


Studying microarray gene expression data of schizophrenic patients for derivation of a diagnostic 
signature through the aid of machine learning

196
Copyright:

©2016 Logotheti et al.

Citation: Logotheti M, Pilalisb E, Venizelosa N, et al. Studying microarray gene expression data of schizophrenic patients for derivation of a diagnostic signature 
through the aid of machine learning. Biom Biostat Int J. 2016;4(5):182‒199. DOI: 10.15406/bbij.2016.04.00106

Rank Term id Term definition Enrichment Hypergeometric 
p-value

Corrected 
p-value

5 R-HSA-2022854 Keratan sulfate biosynthesis 3/27 1.49E-03 0.0186

6 R-HSA-1638074 Keratan sulfate/keratin metabolism 3/33 2.68E-03 0.0259

7 R-HSA-76009 Platelet Aggregation (Plug Formation) 3/34 2.92E-03 0.0283

8 R-HSA-3560782 Diseases associated with glycosaminoglycan 
metabolism 3/38 4.01E-03 0.0336

9 R-HSA-2022857 Keratan sulfate degradation 2/12 4.41E-03 0.0362

10 R-HSA-173623 Classical antibody-mediated complement 
activation 2/15 6.90E-03 0.0431

11 R-HSA-166658 Complement cascade 3/47 7.30E-03 0.0469

12 R-HSA-2029480 Fcgamma receptor (FCGR) dependent 
phagocytosis

4/91 7.45E-03 0.048

Supplementary Table 4 Overrepresented MGI Mammalian Phenotype Ontology terms occurring from the enrichment analysis of the differentially expressed 
genes. The ranking of statistically significant terms is according to the corrected p-value

Rank Term id Term definition Enrichment Hypergeometric 
p-value

Corrected 
p-value

1 MP:0010458 pulmonary trunk hypoplasia 2/3 4.07E-04 2.90E-03

2 MP:0000380 small hair follicles 2/5 1.34E-03 6.30E-03

3 MP:0011090 perinatal lethality, incomplete penetrance 9/226 1.52E-03 7.60E-03

4 MP:0010505 abnormal T wave 2/6 1.99E-03 0.0115

5 MP:0001879 abnormal lymphatic vessel morphology 3/24 2.69E-03 0.0152

6 MP:0001614 abnormal blood vessel morphology 6/142 6.77E-03 0.0176

7 MP:0001177 atelectasis 4/67 7.98E-03 0.019

8 MP:0000008 increased white adipose tissue amount 3/38 9.94E-03 0.0216

9 MP:0001261 obese 4/73 0.0107 0.0268

10 MP:0002828 abnormal renal glomerular capsule morphology 2/14 0.0113 0.0284

11 MP:0010239 decreased skeletal muscle weight 2/15 0.013 0.034

12 MP:0004938 dilated vasculature 2/17 0.0166 0.0365

13 MP:0002106 abnormal muscle physiology 4/84 0.0172 0.0365

14 MP:0002206 abnormal CNS synaptic transmission 4/87 0.0193 0.0373

15 MP:0005065 abnormal neutrophil morphology 2/18 0.0185 0.0397

16 MP:0009050 dilated proximal convoluted tubules 2/19 0.0205 0.0462

17 MP:0002463 abnormal neutrophil physiology 4/94 0.0249 0.0473

Table Continued
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Supplementary Table 5 Overrepresented Human Phenotype Ontology terms occurring from the enrichment analysis of the differentially expressed genes. 
The ranking of statistically significant terms is according to the corrected p-value

Rank Term id Term definition Enrichment Hypergeometric p-value Corrected 
p-value

1 HP:0200120 Chronic active hepatitis 3/11 2.00E-04 2.50E-03

2 HP:0001394 Cirrhosis 6/104 1.02E-03 3.90E-03

3 HP:0002138 Subarachnoid hemorrhage 2/5 1.16E-03 6.80E-03

4 HP:0045044 Decreased serum complement C4b 2/9 4.06E-03 8.40E-03

5 HP:0000872 Hashimoto thyroiditis 2/11 6.12E-03 0.0104

6 HP:0010702 Increased antibody level in blood 3/35 6.53E-03 0.0157

7 HP:0000992 Cutaneous photosensitivity 4/73 8.45E-03 0.0158

8 HP:0002910 Elevated hepatic transaminases 6/155 7.37E-03 0.0162

9 HP:0002092 Pulmonary hypertension 5/114 8.46E-03 0.0217

10 HP:0000979 Purpura 3/47 0.0147 0.0272

11 HP:0100729 Large face 2/20 0.0198 0.0277

12 HP:0002206 Pulmonary fibrosis 3/48 0.0155 0.0288

13 HP:0001635 Congestive heart failure 6/197 0.0217 0.0303

14 HP:0001808 Fragile nails 2/22 0.0238 0.0305

15 HP:0000311 Round face 4/98 0.0227 0.032

16 HP:0010982 Polygenic inheritance 2/23 0.0258 0.0353

17 HP:0011344 Severe global developmental delay 4/103 0.0266 0.0403

18 HP:0002633 Vasculitis 3/59 0.0268 0.0434

19 HP:0001369 Arthritis 4/104 0.0275 0.0447

20 HP:0006519 Alveolar cell carcinoma 2/25 0.0302 0.0467

21 HP:0002922 Increased CSF protein 2/26 0.0325 0.0476

22 HP:0009891 Underdeveloped supraorbital ridges 2/62 0.0304 0.049

Supplementary Table 6 Hub genes according to ontological clusters amount. Bioinfominer reveals 10 genes as hub nodes of the enriched GO graph

Rank Gene symbol Clusters Enriched clusters Interactors Associated drugs

1 CCL3 4 4 0 1

2 SYK 4 4 2 10

3 RASGRP1 2 2 0 0

4 VEGFA 2 2 0 24

5 SMAD7 2 2 1 0

6 RPS6KB1 2 2 2 2

7 S100A9 2 2 2 0

8 S100A8 2 2 3 0

9 FMOD 2 1 0 0

10 HCK 2 2 0 5
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Supplementary Table 7 Exhaustive grid search results for the developed classification algorithms (RF, Extra Trees, kNN, Adaboost, SVM) based on genes that 
occurred from SVM-RFE feature selection. Possible combinations of parameter values are evaluated and the optimal value for each tested classification algorithm 
is presented

RF Extra trees kNN Adaboost SVM

Parameter Optimal 
Value Parameter Optimal 

Value Parameter Optimal 
Value Parameter Optimal 

Value Parameter Optimal 
Value

Criterion gini Criterion: gini N_neighbors 5 N_estimators 100 kernel linear

Max_features 7.07 Max_features 5.5 p 1 Learning rate 1 C 200

N_estimators 50 N_estimators 30 weights uniform

RF parameters: Criterion: the function to measure the quality of a split; gini corresponds to the Gini impurity.
Max_features: the number of features to consider when looking for the best split; 
N_estimators: the number of trees in the forest.
Extra Trees parameters: Criterion. Max_features. N_estimators as described in RF.
kNN parameters: N_neighbors: number of neighbors to use by default for k_neighbors queries.
P: power parameter for the Minkowski metric; p=1 is equivalent to using manhattan_distance. 
Weights: weight function used in prediction; in uniform weights all points in each neighborhood are weighted equally.
AdaBoost parameters: N_estimators: the maximum number of estimators at which boosting is terminated. Learning rate: Learning rate at which the 
contribution of each classifier shrinks.
SVM parameters: Kernel: specifies the kernel type to be used in the algorithm.

 C: penalty parameter C of the error term.

Supplementary Table 8 Exhaustive grid search results for the construction of the classification models of gene expression from the independent test dataset 
GSE 21935, based on the 21 gene subset of the differentially expressed genes, after SVM-RFE feature selection on the GSE 17612 dataset. All the possible 
combinations of parameter values are evaluated and the best combination is presented for each tested classification algorithm

RF Extra trees kNN Adaboost SVM

Parameter
Optimal 
Value Parameter

Optimal 
Value Parameter

Optimal 
Value Parameter

Optimal 
Value Parameter

Optimal 
Value

Criterion gini Criterion: gini N_neighbors 5 N_estimators 200 kernel linear

Max_features 3.87 Max_features 10 p 1 Learning rate 1 C 1000

N_estimators 15 N_estimators 10 weights uniform

RF parameters: Criterion: the function to measure the quality of a split; gini corresponds to the Gini impurity. 

Max_features: the number of features to consider when looking for the best split.

 N_estimators: the number of trees in the forest.

Extra Trees parameters: Criterion, Max_features, N_estimators.

kNN parameters: N_neighbors: number of neighbors to use by default for k_neighbors queries.

 P: power parameter for the Minkowski metric; p=1 is equivalent to using manhattan distance. 

Weights: weight function used in prediction; in uniform weights all points in each neighborhood are weighted equally.

Adaboost parameters: N_estimators: the maximum number of estimators at which boosting is terminated. Learning rate: learning rate at which the 
contribution of each classifier shrinks.

SVM parameters: Kernel: specifies the kernel type to be used in the algorithm.
 C: penalty parameter C of the error term.
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Supplementary Table 9 Mean performance estimation values of different classification algorithms after applying 10-fold CV. Italics indicate the highest value 
corresponding to each performance metric

GSE 17612 (no feature selection) ROC_AUC Accuracy Precision Sensitivity

kNN 0.88 0.85 0.84 0.93

SVM 0.93 0.94 0.97 0.93

RF 0.9 0.77 0.84 0.81

Extra Trees 0.85 0.78 0.89 0.75

AdaBoost 0.95 0.92 0.91 0.96

GSE 17612 (with feature selection) ROC_AUC Accuracy Precision Sensitivity

kNN 0.93 0.9 0.9 0.93

SVM 0.95 0.94 0.97 0.93

RF 0.98 0.83 0.93 0.89

Extra Trees 0.94 0.88 0.87 0.84

AdaBoost 0.93 0.78 0.8 0.77

GSE 21935 ROC_AUC Accuracy Precision Sensitivity

kNN 0.72 0.63 0.79 0.58

SVM 0.82 0.76 0.87 0.74

RF 0.91 0.76 0.83 0.85

Extra Trees 0.76 0.6 0.76 0.65

Adaboost 0.9 0.81 0.75 0.86
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