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Introduction
Epidemiological studies on arsenic exposure through drinking 

water conducted in arsenic endemic regions of the world provide 
clear evidence of cancer risks at high-dose levels. Fortunately, very 
few humans are exposed to high dose levels. Much more common 
is exposure to low to moderate dose levels where evidence of 
carcinogenicity is mostly inconclusive. For example, a meta-analysis 
conducted by Chu & Crawford-Brown1 found a small but measurable 
increase in the risk of bladder cancer from arsenic exposure through 
drinking water at 10 ppb. These results are 10 times lower than those 
extrapolated by the NRC.2 However, Brown1 argues that problems 
with their methodology and analysis mean that their results may not 
be reliable. Mink et al.,3 replicated Chu & Crawford-Brown’s1 results, 
finding a generally weak and statistically insignificant relationship 
between low-dose exposure to arsenic and bladder cancer. Likewise 
Begum et al.,4 found a generally weak relationship between bladder 
and lung cancer and exposure to low-dose arsenic via drinking water. 
Other than the NRC,2 the combined results from these studies find 
no statistically significant dose-response relationship under the 
assumption of linear models for the logarithm of relative risks and 
levels of exposure to arsenic.

These meta-analysis studies on arsenic exposure and disease risk 
assume linear exposure-response models. The linearity assumption 
for the logarithm of relative risks and levels of exposure to arsenic 
is overly simplified and is not adequate to capture the local structure 
accurately. This article applies fractional polynomial and cubic spline 
regression models in order to capture the shapes of the exposure-
response relationships between both bladder and lung cancer risk 
and exposure to low to moderate dose arsenic. We consider low to 
moderate dose levels with concentrations from near 0 to 300µg/l. We 
also consider more recent studies on low to moderate dose exposure 
to arsenic and the risk of bladder and lung cancer. These flexible 
models are used to identify a combined general exposure-response 
relationship for the logarithm of relative risk and the levels of 

exposure to arsenic. The primary objective of this study is to predict 
overall risks of bladder and lung cancers by combining findings from 
systematically selected studies on these cancers under both linear and 
non-linear modeling assumptions. We predict overall risks of bladder 
and lung cancers for a series of exposure levels from the best fitting 
models.

Though flexible regression models have been used to combine 
results in other epidemiological studies, such as alcohol consumption 
and all-cause mortality by Bagnardi,5 this is the first application to 
low to moderate dose arsenic consumption and the risk of internal 
cancers. This article is organized as follows: section 2 considers the 
systematic review of the bladder and lung cancer studies, section 3 
discusses the fractional polynomials and the spline regression models, 
section 4 explains the results, and section 5 contains our conclusion 
and discussion.

Background
Systematic reviews are carried out to select both bladder and lung 

cancer studies and exposure to low to moderate levels of arsenic 
through ingestion. Flowcharts of the step-by-step study selection 
procedure are presented in (Figures 1 & 2).

We searched the Medline database with four arsenic search terms: 
arsenic, arsenite, arsenate, arsenicals and eight bladder cancer search 
terms: bladder cancer, transitional cell carcinoma of the bladder, 
urothelial cancer, urinary tract cancer, bladder neoplasm, urinary 
bladder neoplasm or urinary bladder cancer. Using these search 
terms, we identified 273 studies published before November 24, 2014 
(Figure 1). We screened titles/abstracts of 222 studies. Of these, we 
reviewed the full text for 68 studies that met our selection criteria 
(Figure 1). Of these, 12 bladder cancer studies6-17 met all the inclusion 
criteria. Inclusion criteria were set as checkpoints which include 

(i)	 English language human study, 

(ii)	Bladder cancer as the health outcome, 
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(iii)	Long-term exposure to arsenic through drinking water not above 
300 µg/l, 

(iv)	Prospective cohort or retrospective case-control studies 
conducted at low exposure levels, 

(v)	 Population based study, and 

(vi)	Relative risk estimate such as risk ratios or odds ratios with 
measures of variability or data that allowed for such calculations 
and available covariate information.

For lung cancer, we searched the Medline database using four 
arsenic keywords: arsenic, arsenite, arsenate, arsenicals and seven 
lung cancer search terms: lung cancer, lung neoplasm, small cell 
lung carcinoma, non-small cell lung carcinoma, bronchioloalveolar 
carcinoma, bronchiectasis, and bronchorrhea. Using these terms, we 
identified 461 studies published before November 24, 2014 (Figure 
2). We screened titles/abstracts of 342 studies. Of these, we reviewed 
full text articles for 32 studies. Of these, 11 lung cancer studies17-27 met 
all the inclusion criteria.

Figure 1 PRISMA flow diagram for bladder cancer study selection.

Of the studies that fit the inclusion criteria, several included the 
same study populations. For example, Ferreccio et al.,25 and Ferreccio 
et al.,22 are from the same case-control study in northern Chile. To 
avoid double counting, we only included Ferreccio et al.,22 Smith et 
al.,26 uses the Ferreccio et al.,22 data in their analysis. Therefore, we 
did not include Smith et al.,26

Likewise, Steinmaus et al.,17 and Steinmaus et al.,27 analyze data 
from the same case-control study. To avoid double counting, we only 
include Steinmaus et al.,17 because it includes a broader range of 
exposure levels. Avoiding double counting by dropping these studies 
means that eight lung cancer studies remain in the meta-analysis.
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Figure 2 PRISMA flow diagram for lung cancer study selection

Summary of the included bladder and lung cancer studies: Table 1 
summarizes the twelve bladder cancer studies and Table 2 summarizes 
the eight lung cancer studies. These tables list authors of each study, 
publication year, study design, outcome measure, exposure measure, 
and whether the analysis was adjusted for covariates. The outcome 
measure RR refers to relative risk or risk ratio, OR refers to odds 
ratio, and HR refers to hazard ratio. Two separate meta-analyses are 
conducted to generate combined dose-response relationships for the 
bladder and lung cancer studies.

Ingestion of arsenic through drinking water was considered as 
the exposure route for both bladder and lung cancer outcomes. The 
studies included in the meta-analysis reported exposure levels in 
various ranges and metrics. To address the multiple exposure metrics 
reported by some studies such as cumulative exposure, average 

exposure, and highest known exposure, the exposure measure in each 
study, including toenail concentration, is converted to micro-gram per 
liter µg/l, which is the most homogeneous metric across the studies.

We consider low to moderate exposure levels as 0-300 µg/l for 
both bladder cancer and lung cancer studies. In some studies either 
lower, upper, or both limits are left open. For an open-ended lower 
limit, we assume that the lower limit is zero. The exposure midpoint 
is calculated by taking the average of the lower and upper limits of 
each range except for an open-ended upper limit. For an open-ended 
upper limit the midpoint is calculated as 1.2 times the lower bound 
of the open-ended upper limit. The reference midpoint is subtracted 
from these midpoints and the difference is considered as the doses in 
subsequent regression models.
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Table 1 Summary of twelve bladder cancer studies selected for meta-analysis 

Bladder cancer studies description

Study 
(publication Yr) Type of study Study population Outcome 

measure Exposure measure Analysis adjusted 
for covariates?

Bates et al.6 Case-control
117 cases and 266 
controls were 
considered.

OR

Two arsenic exposure indices 
(total cumulative exposure) and 
intake concentration were used 
as exposure measures.

Statistical analysis 
was adjusted for 
smoking.

Bates et al.7 Case-control
A total of 114 case 
control pairs were 
considered.

OR

Exposure to arsenic was 
estimated from water samples 
collected from subjects’ current 
residence.

Statistical analysis 
was adjusted for 
covariates.

Chen et al.8 Case-control
49 patients with newly 
diagnosed bladder 
cancer 224 controls.

OR

Average exposure estimated 
from village they lived in 30 
years before and the average 
AR in well water in that village 
in 1974 and 1976.

Statistical analysis 
was adjusted for 
smoking and other 
covariates

Chen et al.9 Prospective 
(Cohort) study

A cohort of 8086 
subjects RR Water samples from wells, 

collected from households.

Adjusted for smoking 
and other relevant 
covariates.

Chiou et al.10 
Prospective 
(Cohort) study

A cohort of 8102 
subjects was 
considered.

RR

Well water samples were 
assayed to estimate arsenic 
concentrations to which study 
subjects were exposed.

Multivariate analysis 
was adjusted for 
smoking and other 
covariates.

Karagas et al.11 Case-control
459 bladder cancer 
cases and 665 controls 
were considered.

OR

Exposure to arsenic was 
determined by analyzing 
toenail clipping samples using 
instrumental neuron activation 
analysis.

Adjusted for smoking 
and other relevant 
covariates.

Kurttio et al.12 Case -cohort

61 bladder cancer 
cases, 49 kidney 
cancer cases and 
275 subjects in the 
reference cohort were 
considered.

RR

Arsenic exposure was 
estimated for short and long 
latency periods and daily dose 
of arsenic was calculated from 
reported consumption of 
drinking water from wells.

Statistical analysis 
was adjusted for 
smoking and other 
covariates.

Kwong et al.13 Case-control

832 cases of bladder 
cancer diagnosed from 
a population based 
case control study

HR

Both toenail arsenic 
concentration and 
concentration from the drinking 
water were collected.

Adjusted for smoking 
and other relevant 
covariates.

Meliker et al.14 Case-control
411 bladder cancer 
cases and 566 controls 
were considered.

OR
A life time exposure to 
arsenic was predicted using 
geostatistical modeling.

Statistical analysis 
was adjusted for 
smoking and other 
relevant covariates.

Michaud et al.15 Case-control

331 bladder cancer 
cases and same 
number of controls 
were considered.

OR

Individual exposure to arsenic 
was determined using toenail 
concentrations that served 
as a biomarker of arsenic 
concentration.

Adjusted for smoking 
and other relevant 
covariates

Steinmaus et al.16 Case-control
181 bladder cancer 
cases and 328 controls 
were considered.

OR

The highest single year 
cumulative arsenic 
concentrations to which the 
subjects were exposed were 
estimated.

Statistical analysis 
was adjusted for 
smoking and duration 
of exposure to 
arsenic.

Steinmaus et al.17 Case-control

232 bladder and 306 
lung cancer cases and 
640 controls were 
considered.

OR
Arsenic exposure was based on 
water quality measurements for 
the individual’s location.

Statistical analysis 
was adjusted for 
smoking and duration 
of exposure to 
arsenic.

https://doi.org/10.15406/bbij.2016.03.00067


Cancer risk from exposure to low to moderate level of arsenic using meta-analysis of flexible regression 
models

86
Copyright:

©2016 Begum et al.

Citation: Begum M, Horowitz JB, Mahi NA. Cancer risk from exposure to low to moderate level of arsenic using meta-analysis of flexible regression models. 
Biom Biostat Int J. 2016;3(3):82‒94. DOI: 10.15406/bbij.2016.03.00067

Table 2 Summary of eight lung cancer studies selected for meta-analysis 

Lung cancer studies description

Study 
(publication Yr)

Type of 
study Study population Outcome 

measure Exposure measure Analysis adjusted 
for covariates?

Chen et al.18 Follow-up 
study

A total of 2503 
residents and 8088 
residents in two 
arseniasis - endemic 
areas in Taiwan

RR
Arsenic exposure was estimated as 
lifetime cumulative exposure

Statistical analysis 
was adjusted for 
smoking and other 
covariates.

Chen et al.19 Follow-up 
study

8086 subjects were 
followed for 11 
years, out of which 
6888 were included 
in the final analysis.

RR
Arsenic concentration was estimated 
using water samples collected from the 
wells used by the subjects.

Statistical analysis 
was adjusted for 
smoking and other 
covariates.

Dauphinne et al.20 Case-
control

196 lung cancer 
cases 359 controls OR

Arsenic concentrations from records for 
community- supplied drinking water and 
for private wells.

Statistical analysis 
was adjusted for 
smoking and other 
covariates.

Garcia et al.21 Follow-up 
study

3,932 American 
Indians who 
participated in the 
Strong Heart Study 
from 1989 to 1991 
and were followed 
through 2008.

HR Arsenic exposure measured as the sum of 
inorganic and methylated species in urine

Statistical analysis 
was adjusted for 
smoking and other 
covariates.

Ferreccio et al.22 Case-
control

152 lung cancer 
subjects and 419 
controls

OR Water quality records of municipal water 
companies

Statistical analysis 
was adjusted for 
smoking and other 
covariates.

Heck et al.23 Case-
control

A total 223 lung 
cancer cases and 
238 controls were 
considered.

OR
Arsenic exposure measures were 
estimated from to enail concentrations.
concentrations.

Relationship of 
smoking in addition 
to arsenic ingestion 
was investigated.

Mostafa et al.24 Case-
referent

3223 cases and 1588 
unmatched case-
referents

OR
Arsenic exposure estimated by average 
concentrations for 64 districts.

Relationship of 
smoking in addition 
to arsenic ingestion 
was investigated.

Steinmaus et al. 17 Case-
control

232 bladder and 306 
lung cancer cases 
and 640 controls 
were considered.

OR
Arsenic exposure was based on water 
quality measurements for the individual’s 
location.

Statistical analysis 
was adjusted 
for smoking 
and duration 
of exposure to 
arsenic.

Methods
A meta-analysis for combining exposure-response relationships 

from observational studies is in general a difficult problem because 
a common exposure-response relationship assumption across studies 
is not realistic. Although the studies are systematically selected to 
ensure uniformity, the assumption of homogeneity seldom holds for 
observational studies in environmental epidemiology, public health, 
or other related fields. Even the studies selected under pre-set criteria 
are likely to have numerous differences including study populations, 
exposure metrics, and outcome measures. Since ‘fixed-effects’ 
models, assume homogeneity across studies, these are not suitable 
for combining exposure-response relationships from observational 

studies. ‘Random-effects’ models are more appropriate for combining 
exposure-response relationships when the exposure-response 
relationships are similar even though the shape and magnitude vary 
across studies.

Methods for summarizing observational exposure-response 
studies quantitatively are well established in the literature.28,29 A 
simple exposure-response model to estimate the trend effect assumes 
that the adjusted odds ratios are uncorrelated. Since the calculation 
of the adjusted odds ratios are based on the same reference category, 
this assumption is violated and the trend estimate becomes inefficient. 
An approximated variance-covariance matrix is estimated from the 
fitted table of exposure-response relationship.29 The approximated 
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variance-covariance matrix is then used in the weighted least square 
estimation of the trend parameter. Trend parameter estimates obtained 
this improved method are both consistent and efficient.

The efficient estimation of the trend effect in an exposure-response 
relationship also depends on the model under consideration. A simple 
linear exposure-response model is limited since the exposure-
response relation is overly simplified. Also, the exposure-response 
relationship across many studies addressing the same question may 
have differential nonlinear shapes. Linear exposure-response models 
are not able to quantify the true relationship between exposure and 
responses in these nonlinear cases. Thus to encompass a wide range 
of exposure-response relationships, flexible models, such as fractional 
polynomials (FP) and spline regression (SR), are preferable to linear 
models as they provide a large group of flexible models to incorporate 
various shapes of exposure-response relations.5 FP models are a family 
of models defined by covariate power transformations of a continuous 
exposure variable. The values of the power are selected from a small 
number of predefined integers and non-integers.30 A conventional 
linear model is a special case of FP models. SR models can come very 
close to the nonparametric regression models as the splines belong to 
a family of smooth functions.

A combined trend estimate of the exposure-response relationship 
is obtained by first estimating a study-specific functional form. At 
study-specific analysis, flexible FP models and SR models are used 
to estimate such a relationship. The study specific estimates obtained 
from the first-stage FP models or SR models are then combined 
through multi-variate meta-analysis. FP and SR models provide a 
rich class of regression models for exposure-response relationship 
in epidemiology. However, implementation of these models is not as 
widespread as linear exposure-response models in epidemiology and 
other related fields. Bagnardi et al.,5 implemented FP and SR models 
for combining exposure-response results from alcohol consumption 
and all-cause mortality studies. In following sections, we discuss the 
methodology for combining exposure-response relationships across 
observational studies using FP and SR models.

Combining exposure-response relationships using 
fractional polynomials

The log relative risk for study is modeled using first and second 
order FPs at study-specific analysis. Relative risk is a generic term that 
represents the risk ratio for cumulative incidence data in prospective 
cohort studies, and the odds ratio for case-control data in retrospective 
studies. The first and second order FP models for study i are presented 
as follows:

                                                                                                     (1)

 

                                                                                                              (2)       

Here m = 12 for bladder cancer studies, m = 8 for lung cancer 
studies, and the powers p, p1, and p2 take values from a pre-specified 
vector c = (−2, −1, −0.5, 0, 0.5, 1, 2, 3) as considered by Bagnardi 
et al.,5 Such a power specification contains considerable flexibility 
to encompass a wide variety of exposure-response shapes. With 
the pre-specified index set p for power transformation, one can fit 
eight first-order models and thirty-six second-order models with all 
possible combinations of exponents for p1 and p2. The best fit model is 
selected as the one that provides highest likelihood for the data under 
that model. Other criteria for model selection are the deviance and 
the Akaike Information Criterion (AIC). For both of these criteria 
smaller values indicate better fit to the data. Both deviance and AIC 
are considered in selecting the best first-order and the best second-
order fractional polynomial models.

The best fit models are then applied to estimate the exposure-
response relationship for each study included in the analysis. In 
order to efficiently estimate trends in dose-response relationships 
for each study, the correlation among the log relative risks is taken 
into account. Estimated trends in dose-response relationship from 
each study are then combined according to principles of multivariate 
random effects meta-analysis to obtain a pooled functional relation.31 
The R package Dosresmeta32 was used to implement the fractional 
polynomial models to both bladder and lung cancer studies.

Combining exposure-response relationships using 
spline regression models

Spline regression (SR) models for fitting exposure-response 
relationships are smoothly joined piecewise polynomials of order q. 
The joint point is known as ‘spline knot’. It is crucial to select the 
spline knot positions properly. Usually knot positions are selected 
based on how well the spline model with selected knots fits the data. 
The shape of exposure-response relationship plays an important role 
in knot selection process as well. A B-spline regression model with 
degree 2 and four knot positions usually at the quantiles of the exposure 
level x has 7 degrees of freedom. The shape of the exposure-response 
relationship may be used to select the number of knots effectively. 
The B-spline regression model for log relative risk ( )log iRR  for the 
ith study can be written as,

( ) ( ) ( ) ( )2 2 2 22
1 2 3 40 1 2 3 4 5 6

log ,i i i ii i i i i i i i i i i
RR X X X k X k X k X kβ β β β β β β

+ + + +
= + + + − + − + − + − + ∈

               if  p 0
            if  p=0;i=1,2log | log ,....,m.

p
i i

i i i i

XRR X X
β
β

≠
= 


1 2

2 1 2
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              if p 0, p 0,
 )          if p p 0; 1,2,..

xlog | ( log ., .
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i i i i

i ii i i i m
XRR X X

β β
β β

≠ ≠
+
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Where the truncated power basis function ( )2
iX k

+
−  is defined as

( ) ( )2
2      if  ,

       
,

0  ,  .
i

i
iX k

otherwise
X kX k

+

 > −
− = 


For degree = 3, the cubic spline regression model becomes,

( ) ( ) ( ) ( )3 3 3 32 3
1 2 3 40 1 2 3 4 5 6 7

log i i i ii i i i i i i i i i i i i
RR X X X X k X k X k X kβ β β β β β β β

+ + + +
= + + + + − + − + − + − + ∈
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Where the truncated power basis function ( )2
iX k

+
−  is defined as

                   ( ) ( )33      if  ,
       

,
0  ,  .

i
i

iX k
otherwise

X kX k
 −

− = +
>


Although SR models are promising in fitting study-specific 

flexible exposure-response relationships, all 12 bladder cancer and 8 
lung cancer studies are extremely sparse with only three to five data 
points (Figure 8 & 9). With only one knot position at 50th percentile, 
we were able to estimate the regression parameters but not their 
variance-covariance matrix. Thus it was not possible to combine the 
study specific regression coefficients from the study specific spline 
models. As a result, we do not include study specific spline models in 
the multivariate meta-analysis for the bladder cancer studies or lung 
cancer studies. This means that only estimates of the coefficients from 
the fractional polynomial models are combined using the multivariate 
meta-analysis.

Multivariate meta-analysis to combine results from 
FP and SR models

To conduct multivariate meta-analysis, we obtain v -dimensional 
vector of regression coefficient estimates ˆ

i
θ

 
and associated                

estimated variance-covariance matrices 
i

S . A random effect 
multivariate meta-analysis Gasparrini31 can be written as follows:

                                 
( )ˆ , ii v

Nθ θ ∑                                      (3)

	

Where i i
S ψ∑ = + . The model in equation (3) is obtained from 

two independent within-study and between-study components. In 
the within study component,                               a v  dimensional 
multivariate normal distribution centered at a vector of true unknown 
outcome parameters 

i
θ  for study i. In the between study component, 

( ),
i v

Nθ θ ψ , where     represents the unknown between study 
variance-covariance matrix. The unknown parameter vectorθ
represents the population average parameters of the average exposure 
response relationship. Estimation of the parameter vector θ  and 
unknown variance-covariance matrix ψ  completes the multivariate 
meta-analysis with a random-effects model. The R package 
Dosresmeta32 is used to carry out the multivariate meta-analysis 
using first and second order fractional polynomial models for both 
the bladder and lung cancer studies. The combined exposure-response 
models are then used to predict the risk for bladder and lung cancer 
in low to moderate exposure ranges of (0-100) µg/l and (0-300) µg/l.

ˆ ( , ),
i v i i

N Sθ θ

ψ

Figure 3 Goodness of fit statistics (AIC) for FP models for bladder cancer studies. Top: AIC plots for first-order fractional polynomial models with p=-2,-1,-
.5,0,.5,1,2,3; Bottom: AIC plots for second-order fractional polynomial models with p1=p2=-2,-1,-.5,0,.5,1,2,3.
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Figure 4 Bladder cancer studies: predicted relative risk relative risk for doses from 0 to 100 µg/l and 95% confidence intervals. Top Left: First-order fitted 
fractional polynomial model with p = 3 (Model 1); Top Right: Second-order fitted fractional polynomial model with p1 = -2, p2 = 3 (Model 2); Bottom Left: 
Second-order fitted fractional polynomial model with p1=p2=3 (Model 3).

Figure 5 Lung cancer studies: predicted relative risk for doses from 0 to 100µg/l. Top Left: First-order fitted fractional polynomial model with p = 3 (Model 1); 
Top Right: Second-order fitted fractional polynomial model with p1 = -2, p2 = 3 (Model 2); Bottom Left: Second-order fitted fractional polynomial model with 
p1=p2=3 (Model 3).

Results
From the twelve bladder cancer studies and the eight lung cancer 

studies, we separately fit the dose-response data to eight first-order and 
thirty-six second-order fractional polynomial models. As discussed in 
section 3.1, the number of first order models and the number of second 
order models follow from the choice of powers for the FP models.

To select the best models from each group, several goodness of 
fit statistics, including deviance and Akaike Information Criterion 
(AIC) are calculated. Specifically, Figure 3 presents the AIC values 
for both first and second-order fractional polynomial models for the 
data from the bladder cancer studies. Among these eight first-order 
fractional models, Figure 3 shows that the model ( ) 3log |RR X Xβ=  where 

3p = , has the lowest AIC. We refer to this model as Model 1. Among 
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the second-order fractional polynomials models, Figure 3 shows that 

the models that have the lowest AIC are ( ) 2 3

1 2
log |xRR X Xβ β−= +  

, where 1
2p = −

 
and 2

3p = , which we refer to as Model 2, and 

( ) ( )( )3 3
1 2

log | logRR X X X Xβ β= +  , where 1 2
3p p= =  , which we 

refer to as Model 3. We estimate the combined relative risks from 
Model 1, Model 2, and Model 3.

For lung cancer studies, we implement the same set of first and 

second-order models as these appear to be the best fitted models. 
According to the goodness of fit statistics, deviance and AIC, the best 
fitted models for the lung cancer studies are Model 1, Model 2 and 
Model 3, which are the same as the bladder cancer studies. Estimated 
study-specific coefficients from these fractional polynomial models 
for the bladder cancer studies are combined using multivariate meta-
analysis. Combined predicted relative risks at dose levels 0 to 100 µg/l 
and 0 to 300 µg/l from Model 1, Model 2, and Model 3 are presented 
in Figure 4 and Figure 5. Similarly, for lung cancer studies, Figures 6 
and Figure 7 present combined predicted relative risks at dose levels 
0 to 100 µg/l and 0 to 300 µg/l respectively.

Figure 6 Bladder cancer studies: predicted relative risk for doses from 0 to 300 µg/l and 95% confidence intervals. Top Left: First-order fitted fractional 
polynomial model with p = 3 (Model 1); Top Right: Second-order fitted fractional polynomial model with p1 = -2, p2 = 3 (Model 2); Bottom Left: Second-order 
fitted fractional polynomial model with p1=p2=3 (Model 3).

Bladder cancer

As discussed in Section 3.3, the regression coefficients of Model 
1, Model 2 and Model 3 are combined through multivariate meta-
analysis methods. The combined estimated coefficients are used to 
estimate the relative risks for doses from 0 to 100 µg/l and to compute 
the corresponding 95% confidence intervals. These results are shown 
in Figure 4.

In each figure, the solid black line shows the predicted relative 
risk and the dashed lines show the corresponding 95% confidence 
intervals. The top left graph shows the results from Model 1, the top 
right graph shows the results from Model 2, and the bottom left graph 
shows the results from Model 3. For doses between 0 and 100µg/l, 
Model 1 predicts relative risk close to 1 or lower. This implies that 
at dose levels between 0 and 100µg/l, there is no or minimal risk of 
bladder cancer. Model 2 produces relative risk estimates that have a 

slight upward trend. However, since these relative risk estimates never 
exceed 1.05, the results indicate no or minimal risk of bladder cancer 
at doses between 0 and 100µg/l. Model 3 finds similar low or no risk 
of bladder cancer for dose levels between 0 and 100µg/l. For each 
model, as shown by the confidence interval, the predicted relative risk 
estimates become less reliable when the dose levels increase.

In Figure 5, we plot relative risk estimates from Model 1, Model 2 
and Model 3 for doses between 0 and 300 µg/l. Relative risk estimates 
from Model 1 show no risk up to dose level 150 µg/l and may even 
slightly reduce the risk of bladder cancer. Model 2 shows lower risk 
at low-dose levels and slightly higher risk at dose levels 150 µg/l or 
more. Model 3 predicts relatively higher relative risk at dose level 
250 µg/l and higher. However, none of these results are statistically 
significant. In addition, at higher dose levels each model predicts less 
reliable relative risk estimates.
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Lung cancer

The combined predicted relative risks for lung cancer studies are 
presented in Figure 6 and Figure 7. Since the combined predicted 
relative risks from Model 1 and Model 2 are close to one, these 
models find no evidence of lung cancer risks at doses 0 to 100µg/l 
(Figure 6). The combined predicted relative risks from Model 3 show 
an upward trend, which implies some evidence of risk beginning at 
approximately 40µg/l. However, the relative risk only increases to 

1.1, which implies a relatively minor risk.

Figure 7 shows the predicted dose-response models for dose levels 
0 to 300 µg/l for the same three models as in Figure 6. Below 150µg/l, 
Model 1 shows no indication of risk of lung cancer. After 150 µg/l, 
there is an increase in predicted relative risk. However, the results in 
all of the models are not statistically significant. Model 2 indicates no 
risk up to 300 µg/l. Model 3 shows an increasing risk after dose level 
100 µg/l, which declines approximately after 230µg/l.

Figure 7 Lung cancer studies: predicted relative risk for doses from 0 to 300 µg/l. Top Left: First-order fitted fractional polynomial model with p = 3 (Model 1); 
Top Right: Second-order fitted fractional polynomial model with p1 = -2, p2 = 3 (Model 2); Bottom Left: Second-order fitted fractional polynomial model with 
p1=p2=3 (Model 3).

Discussion and Conclusion
This article applies fractional polynomial and spline regression 

models to determine the shapes of the dose-response relationships 
between bladder and lung cancer risk and exposure to low to moderate 
dose arsenic. Our results are similar to Mink et al.,3 who found a 
generally weak and statistically insignificant relationship between 
low-dose exposure to arsenic and bladder cancer and Begum et al.,4 
who found a generally weak relationship between bladder and lung 
cancer and exposure to low-dose arsenic. We estimate overall risks of 
bladder and lung cancers by combining findings from systematically 
selected studies on these cancers under both linear and non-linear 
modeling assumptions. We consider fractional polynomial models 
that include a linear model as a special case, and the spline regression 
models. Fractional polynomial models do not provide any statistically 
significant relative risks of bladder and lung cancer at low to moderate 
dose levels of arsenic exposure. These models predict no or minimal 
risk for bladder and lung cancer at low to moderate dose levels (0 to 
150) µg/l. It is also to be noted that at higher dose levels each model 
predicts less reliable relative risk estimates for bladder and lung cancer. 

Overall, we found a weak and statistically insignificant relationship 
between both bladder and lung cancer and low to moderate exposure 
to arsenic.

However, it is important to observe that both bladder and lung 
cancer studies have only few data points in the range of exposure – 
response set (Figure 8 and Figure 9). Since sample size affects the 
statistical significance, we note that further investigation with larger 
number of points in the range of exposure – response set is required to 
draw firm conclusions. 

Spline regression models are promising in fitting study-specific 
flexible exposure-response relationships. However, as shown in 
Figures 8 and Figure 9 there are only 3 to 5 data points in each of 
the bladder cancer and lung cancer studies. Figures 8 and Figure 9 
present study specific exposure response relationships for bladder and 
lung cancer studies respectively. As evident from Figure 8 and Figure 
9, there is lack of homogeneity in terms of exposure metrics as well 
as shape of the exposure response relationships. These figures also 
show the sparseness in the data for which the computation of the study 
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specific spline models was not possible. With only one knot position 
at 50th percentile, we were able to estimate the regression parameters 
but not their variance-covariance matrix. Thus it was not possible 
to combine the study specific regression coefficients from the study 
specific spline models. As a result, we do not include study specific 

spline models in the multivariate meta-analysis for the bladder cancer 
studies or lung cancer studies. This means that only estimates of the 
coefficients from the fractional polynomial models are combined 
using the multivariate meta-analysis.

Figure 8 Scatter plots of exposure levels and log relative risks for twelve bladder cancer studies.
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Figure 9 Scatter plots of exposure levels and log relative risks for eight lung cancer studies.

Future studies investigating the association between exposure to 
low to moderate levels of arsenic and internal cancers can extend this 
work by including additional co-variate information. For instance, 
smoking status could be included to determine its effect on the dose-
response relationships. This article can also be extended by obtaining 
additional data on low and especially moderate dose arsenic exposure 
levels and internal cancer for finer analyses. Due to the computational 
limitations for spline regression models with sparse data, our results 
were limited to only fractional polynomial models. This could be 
overcome, with additional data or the development of methods for 
modeling sparse data.
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