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Abstract

The assumption of the symmetry of the underlying distribution is important to many
statistical inference and modeling procedures. This paper provides a test of symmetry
using kernel density estimation and the Kullback-Leibler information. Based on simulation
studies, the new test procedure outperforms other tests of symmetry found in the literature,
including the Runs Test of Symmetry. We illustrate our new procedure using real data.
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Introduction

Many statistical applications and inferences rely on the validity of
the underlying distributional assumption. Symmetry of the underlying
distribution is essential in many statistical inference and modeling
procedures. There are several tests of symmetry in the literature;
however most of these tests suffer from low statistical power. Tests
have been suggested by Butler,) Rothman & Woodroofe,? Hill &
Roa,’ Baklizi, and McWilliams.> McWilliams® showed, using
simulation, that his runs test of symmetry is more powerful than those
provided by Butler,' Rothman & Woodroofe,”> and Hill & Roa® for
various asymmetric alternatives. However, Tajuddin® introduced a
distribution-free test for symmetry based on Wilcoxon two-sample
test which is more powerful than the runs test.

Moreover, Modarres & Gastwirth’ modified McWilliams® runs test
by using Wilcoxon scores to weight the runs. The new test improved
the power for testing for symmetry about a known center but did not
perform well when the asymmetry is focused in regions close to the
median for a given distribution. Mira,® introduced a distribution free
test for symmetry based on Boferroni’s Measure. She showed that
her test outperform tests introduced by Modarres & Gastwirth’ and
Tajauddin.® Recently, Samawi et al.,’ provided a test of symmetry
based on a nonparametric overlap measure. They demonstrated that
the test of symmetry based on an overlap measure outperformed other
tests of symmetry in the literature, including the runs test. Samawi
& Helu' introduced a runs test of conditional symmetry which is
reasonably powerful to detect even small asymmetry in the shape of
the conditional distribution. In addition, the Samawi & Helu'® test
does not need any approximation nor extra computations such as
kernel estimation of the density function as in the other tests that are
found in the literature.

This paper uses the Kullback-Leibler information to test for
the symmetry of the underlying distribution. Let f(x) and f;(x) be
two probability density functions. Assume samples of observations
are drawn from continuous distributions. The Kullback-Leibler
discrimination information function is given by

S(x)

DU fo)= | fl(x)ln[m]dxsT SN(A)d- ] fIN(f0)dx,
o 2 —® —0

DU f)=] fi() m[f%’)jdx,;f FEI(AO)-] £ I( f(6))d,
o 2 —w —o

()

as defined by Kullback & Leibler.!" For simplicity we will write
(1) as

D(f1,/2)=Dy(f1»/1)=Diy(f1,12), where

Du(ifD= 1 /G 00))dx and Dy (f.fa)= | f(6)In(fa(x))d.

This measure can be directly applied to discrete distributions
by replacing the integrals with summations. It is well known that
D(f;,£>)>0, and the equality holds if and only if f;(x)=/5(x) almost
everywhere. The discrimination function D(f,,f,) measures the
disparity between f; andf, .

Many authors used the discrimination function D(.,.) for testing
goodness of fit of some distributions. For example see Alizadeh &
Arghami.'>!3

In this paper we consider testing the null hypothesis of symmetry
for an underlying absolutely continuous distribution F(.) with known
location parameter and density denoted by f(.) H:f(x)=f(—x)

versus H . f (x)# f (—x);for some x. Under the null hypothesis of
symmetry, ifwelet 7, (x)=(x) and f, (x)=/f(=x) then D(z, 1) =0

Since kernel density estimation procedures are readily available
in various statistical software packages such as SAS, STATA, S-Plus
and R, we were interested in exploring the development of a new
test of symmetry using kernel density estimation of D(f;,f,). This
paper will introduce a powerful test of symmetry based on Kullback-
Leibler discrimination information function. The Kullback-Leibler
information test of symmetry and its asymptotic properties are
introduced in Section 2. A simulation study is provided in Section
3. Illustrations of the test using base deficit score data and final
comments are given in Section 4.

”IIII Submit Manuscript | http://medcraveonline.com

Biom Biostat Int J. 2016;3(2):44-52.

44

@ @ @ ©2016 Samawi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which
oy NG permits unrestricted use, distribution, and build upon your work non-commercially.


https://creativecommons.org/licenses/by-nc/4.0/
https://crossmark.crossref.org/dialog/?doi=10.15406/bbij.2016.03.00060&domain=pdf

A test of symmetry based on the kernel kullback-leibler information with application to base deficit data

Test of symmetry based on the kullback-
leibler discrimination information function

Assume that a random sample, X|,X,...,X,, is drawn from
absolutely continuous distribution F(.) having known median,
assumed to be 0. In the case of an unknown median, or if the center
of the distribution is not known, then the data can be centered by a
consistent estimate of the median. However, the implications of
centering the data around a consistent estimator of the median on
the asymptotic properties are not straightforward. Therefore, further
investigations are needed to study the robustness of the proposed test
of symmetry and compare it with other available tests of symmetry
when the median is unknown. In this paper we will discuss only the
case where the median of the underlying distribution is assumed
known.

Consider testing for symmetry Hy. f(x)=f(-x)
versus H ,: f (x)#f (—x);for some x. Let
[(x0)=f(x) and f5(x)=1(-x) Under the null hypothesis,

D(f,/,)=0 . An equivalent hypothesis for testing the symmetry

is  HyD(f.f,)=0 versus H,:D(f,f,)>0 let O be a consistent
nonparametric estimator of D(f},f,) . Under the null hypothesis of
symmetry and some regularity assumptions, which will be discussed
later in this paper, we propose the following test of symmetry:

D _OLN(OJ) , ®)

205

For large n, where &pis a consistent estimator of the standard
error of D . An asymptotic significant test procedure at level ¢ 1is
to reject H, ifzy>z,, where Z, is the upper « percentile of the
standard normal distribution.

Kernel estimation of D(f,f,)

For the i.i.d. sample X|,X,....,X,, let D,,(f;,f;) be an estimate
of D\,(fi.f1)- To address which estimator of D,(f,f;) will be
appropriate to our inference procedure we need to state some
necessary conditions:

C1: fis continuous. (Smoothness conditions)
C2: fis k times differentiable. (Smoothness conditions)

C3:D ] ([X1,[X] <1, where [X] is the integer part of X. (Tail
conditionS

C4: Inf )50/ (x)>0 (Tail condition)

C5: [f(Inf )?<o0 (Peak condition) (Note that, this is also a
mild tail condition.)

C6: fis bounded. (Peak condition)

Some suggested estimators for 7011(_,;,‘;;):}0 £,()In(f;(x))dx may
be found in the literature. These include the plug-in estimates of
entropy which are based on a consistent density estimate f, of f.
For example, the integral estimate of entropy introduced by Dmitriev
& Tarasenko.' Joe'® considers estimating —D,,(f;,f;) when f, is a
multivariate pdf, but he points out that the calculation when ]A’] isa
kernel estimator gets more difficult when the dimension of the integral
is more than two. He therefore excludes the integral estimate from
further study. The integral estimator can however be easily calculated
if, for example, f; is a histogram.
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The re-substitution estimate is proposed by Ahmad & Lin'® as
follows:

- All(ﬁvﬁ)zfiilnﬁ()(i)y 3)
i=1

Where fl isakernel density estimator? They showedthemeansquare
consistency of (3), such that ,lim  E{(Dy,(£./)~Dy\ (£, /)’ }=0
Joe' considers the estimation of —Dy,(f,/f;) for multivariate pdfs
by an entropy estimate of the re-substitution type (3), also based on
a kernel density estimate. He obtained asymptotic bias and variance
terms, and showed that non-unimodal kernels satisfying certain
conditions can reduce the mean square error. His analysis and
simulations suggest that the sample size needed for good estimates
increases rapidly when the dimension of the multivariate density
increases. His results rely heavily on conditions C4 and C6. Hall
& Morton'” investigated the properties of an estimator of the type
(3) both when f, is a histogram density estimator and when it is
a kernel estimator. For the histogram estimation they showed that

im0 (D (f.)-Dyy (f;./)~N(0,07) under certain tail and

smoothness conditions with.
o?=Var(In(f (X)) @)

Other estimators using sampling-spacing are investigated by
Tarasenko,'® Beirlant & van Zuijlen,” Hall,”® Cressie,”! Dudewicz
& van der Meulen,” and Beirlant.?® Finally, other nonparametric
estimator has been discussed by many authors including Vasicek,*
Dudewicz & Van der Meulen,”? Bowman® and Alizadeh.* Among
these various entropy estimators, Vasicek’s sample entropy has been
most widely used in developing entropy based statistical procedures.
However, deriving the asymptotic distribution for there D is hard
to establish. Therefore, in this paper we will adopt the kernel re-
substitution estimate which is proposed by Ahmad & Lin.!'

We will adopt the notation of Samawi et al.,” Our proposed test
of symmetry is as follow: Let X;,X,...,X, be a random sample
from absolutely continuous distribution £'(.) which is continuously
differentiable with uniformly bounded derivatives and having known
median.

Let K be a kernel function satisfying the condition
[ K(x)dx=1. (%)

For simplicity, the kernel K will be assumed to be a symmetric
density function with mean 0 and finite variance; an example

is the standard normal density. The kernel estimators for
f(w;) and f (-w,),i=1,2,...,C, are:
~ 1 n —W,—X;
Tr(w)y=— % [ f] ©)
nh _ h
and 7=

Jelwy= 3 K 2
ST U

(7
Respectively, where C is the number of bins and depends on the
sample size. As in Samawi et al.,’ we suggest to take the integer of
C=VJn. In addition, N is the bandwidths of the kernel estimators
satisfying the conditions that 4>0,A—0 and (nh—>) as n—0 . There
are many choices of the bandwidths (% ). In our procedure we use the
method suggested by Silverman?’ Using the normal distribution as the
parametric family, the bandwidths of the kernel estimators are
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h=0.94(n)"5 | ®)

Where A =min {standard deviation of ( X;,X,....,, ), interquantile
range of ( X;,X,....,X, )/1.349}. This form of (8) is found to be adequate
choices of the bandwidth for many purposes which minimizes the
integrated mean squared error (IMSE),

IMSE=E[ f, (x)-f (x)] dx.
9

We will use the Samawi et al. [9] suggestion to calculate the bins
as follows: Let R=range(x,,x,,...,x,) , then bins will be selected as

W,=W_1+0,, where i=2,...,C, w = min(xl,xz,...,x )and
n

5t
- C

Using the above kernel estimator, the nonparametric kernel
estimator of D( f}, f,) under the null hypothesis is given by

D] jy (x)ln[ﬁ(”]dx, = By (e (0 e GNPy i (), e (—),
e
(10)
Which can be approximated by?
~ 18 . 16 -
D=2Xn fe ()= X fi (-w) (1D

i=1 i=1
The approximate variance of D is given by
c . c .
Var(Z1n fi (w;)) Var(Z1n fi (-=w;))

) — i=1 , i=1
Var(D)= o + o

Asymptotic properties of D

The nonparametric kernel estimator of D(f{,f;) (D) is based on

the univariate kernel for density estimation, K:R—R . The necessary
regularity conditions imposed on the univariate kernel for density
estimation are:

1. [K(z)dz=l.
11 [, 2" K (2)dz=0 for any B=1...., -1, and [ |2/ K (z)dz<ce.

1L R=[,K*(z)dz<o0.
nh
V. 7>0,h—0 , (nh—w) and (———x)
logn
These conditions may be found in Silverman®” (Chapter 3) or

Wand & Jones?® (Chapter 2).

Where,

Copyright:
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To show consistency of D, apply the kernel density asymptotic
properties found in Silverman,”” (Chapter 3) or Wand & Jones,®
(Chapter 2). Under assumptions 1-4 and assuming that the density
SRR is continuous at each w;, i=1, 2,... C,

Bias(fi (—w)=o(1)— and Bias( fy (w;)=0(1) (12)

Var(Fe ) =LEM K @)ooy and Far( 7 on) LU K o,
(13)

and for h>0,h—0 and (nh—o0) as

T )T r=w) and fi ()" £ (n) If ()
uniformly continuous, then the kernel density estimate is

n—>0

strongly consistent. Moreover, as in Ahmad & Lin,'

clim_ E{(Dy,(fi (). fx ())=Dyy (fic (), fic (x)))*}=0, and
hence Dy, (Ji (), f () —2 Dyy (fic (), f (X)), as Co0  and

Doy (e (). Fre (=) —25 Dy (fi (). fie (=), as C—>0 . However,

D=Dy, (fx (x). fxe () =Dy (fy (x), fie (=x))

D—L 5 D(f(w),f(~w)), as C—0.

since therefore

To drive the asymptotic distribution of D, we will define
D(f,f,) as a functional

D)= § A= 00 If (0= | I 00)F- [ Tnfy(w)dF;

0

Using the previously stated regularity conditions, some regularity
conditions given by Serfing? and assuming that the Gateaux
derivatives of the functional D(f[,f,) exist, we can show that the
partial influence function of the functional D(f],f,) are as follows:

LOwELF)=In fi(w)= [ f(9)Inf; (wdw,
and -
LW E=ln fy,00)~ [ fi(w)Infs (w)dw.

-0

Note that
[ Ly (W F (), Fy (W)dF, (w)=0 and [ L, (w;F; (w),F, (W))dE; (w)=0.

Now using this functional representation of D( f;,f,). then as in
Samawi et al.,*® and Serfing,”

A L
JC(D-D(f,.£,)——>N(0.03),
Where o} =] L (w13, F)dF +[ Ly (W, F, Fy )dF,

(14)

A consistent estimate for 0'2 is given by

o 1 E ~oa 16 . A
O-[z')zzz LIZ(W;Fi ’E)+Ez L%(W;Fi 5F2)’

i=1 i=1

Ly (wiEs B=In £,(w) =Dy, (f,(w), /(W) and Ly (w35, E)=In £y (w)=Dyy (f (), f5 (w)si=1.2,....C,

Where in our case f;(w;)=f(w;) and f, (w;)=1(-w;) .

For discussions about different methods addressing the issue of

the performance of kernel density estimation at the boundary, see Hall
& Park.?!

Simulation study

As in Samawi et al.,’ to gain some insight of our procedure, a
simulation study was conducted to investigate the performance of
our new test of symmetry based on D . We compared our proposed
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test of symmetry with the test proposed by McWilliams,” Modarres
& Gastwirth,* Mira® Bonferroni’s test, and Samawi et al.,’ tests of
symmetry.

As in McWilliams,> the runs test is described as follows:
For any random sample of size n, let Y)Y, Y, denote the
sample values ordered from the smallest to largest according to
their absolute value (signs are retained), and §;,S, S, denote
indicator variables designating the sign of the 1; values [
§;=1if ¥ ;) is nonnegative, 0 otherwise ]. Thus, the test statistic used

for testing symmetry is = the number of runs in .S, S, sequence=
n
, where
+Y1 ;

j=2
S*(y,,F)=46"+(D. Y —4D_ S
an—>zlil asn — 0,8 (y,,F) =46" +( M) —4D, Sz
2
n X )and ¢ = 0.5
—_— - and c = 0.5.
2¢ [(n/2)+cn4/5]:n [(n/2)+cn4/5+l]:n ’

The Modarres & Gastwirth®* test is the hybrid test of sign test in
the first stage and a percentile-modified two-sample Wilcoxon see
Gastwirth® test in the second stage. Finally, Samawi et al.,’ test of
symmetry is based on kernel estimate of the overlap measure.

In the following simulation, SAS version 9.3 {proc kde;
method=srot} is used. As in McWilliams,’ the generalized lambda
distribution see, Ramberg & Schmeiser** is used in our simulation
with following set of parameters:

1- 4,=0,2,=0.197454,2,=0.134915,4,=0.134915, (Symmetric)
2- 4=0,4,=1,4,=1.4,2,=0.25,

3- 4,=0,4,=1,4,=0.00007,4,=0.1,

4- 7,=3.586508,4,=0.04306,1,=0.025213,4,=0.094029,

5- 4,=0,4,=—1,4,=-0.0075,4,=-0.03,

6- A4=—0.116734,4,=-0.351663,4,=—0.13,4,=—0.16,

7- 4=0,4,=-1,4,=-0.1,4,=-0.18,

8- 4,=0,4,=—1,4,=-0.001,4,=-0.13,

9- 4,=0,4,=—1,4,=—0.0001,4,=-0.17.

Table 1(1) Probability of Type | Error under the Null Hypothesis (@=0.05)

Copyright:
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;[0 S8,
TS #S

We reject the null hypothesis if R" is smaller than a critical value
(¢, ) at the pre-specified value of & . Moreover, Mira [8] Bonferroni’s
test is 7, (F,)=2(X,—X.,) , where X,,,=Median(X,,X,,...X,) . The

process is to reject the null hypothesis if where

a
[ (F, )IZT:!SC (£,

2 1

— — 27
(X-X,)'.8; =X, -~ L XX, <X,),D,,
mia ‘ |

o
’ n—1

M=

i=1

. 1,2 .
To generate the observations we used %=4 o (Y, =,

where 1;a uniform random number. The significance level used
in the simulation is «=0.05, with sample sizes n=30, 50, and 100.
To investigate the Type I error, the symmetric distributions used in
the simulation are the first case of the generalized lambda and the
normal. Our simulation is based on 5000 simulated samples. The 95%
confidence intervals of the true probability of type I error under the
null hypothesis with a=0.05 are (0.04396, 0.05504).

Table 1.1 shows the estimated probability of type I error. Our test
is an asymptotic test with a slight bias in D(., .) and in the variance
estimation for small sample size. For sample sizes more than 30,
the test seems to have an estimated probability of type I error close
to the nominal value 0.05. However, Bonferroni’s test seems to be
conservative test procedure, while Modarres, Gastwirth test is slightly
conservative for small sample size. Table 1.2 and Table 1.3 show
that using D(., .) based test is more powerful than McWilliams,’
Bonferroni’s, Modarres & Gastwirth®> and Samawi et al.,’ tests in all
of the presented cases. The efficiency increases as the sample size
increases.

Note: The values of skewness (a;) and kurtosis (a,) are from
McWilliams.?

Note: The values of skewness (a;) and kurtosis (a,) are from
McWilliams.?

Test Modarres
o, . Test based on
Distribution n Run based Bonferroni’s and gastwirth Kullback-leibler
tests on the (1998) test . .
n(F,) information
overlap n W,
0.80
Case #| generalized lambda 30 0.046 0.056 0.03 0.027 0.051
— — _ 50 0.052 0.051 0.032 0.044 0.047
A, = 0,4, = 0.197454, 4, = 0.134915,
- — — 100  0.058 0.052 0.027 0.046 0.051
2, =0.134915, @, = 0,0, = 3.0
30 0.052 0.057 0.03 0.03 0.052
Normal (0, 1) 50 0.048 0.055 0.03 0.043 0.051
100 0.051 0.052 0.032 0.048 0.052
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Table 1(2) Power of Kullback-Leibler Information based test, with comparison with other tests Under Alternative Hypotheses (=0.05)

Test ::ldarres Test based
Case # n Run based Bonferroni’s gastwirth on kullback-
test on the n(F,) leibler
n (1998) Test . .
overlap W, information
0.80
-2 30 0.282 0.501 0.253 0.495 0.948
A4=0,4,=1,,=1.4,2,=0.25 0;=0.5,2,=2.2 50 0.456 0.839 0.352 0.941 0.992
100 0.781 0.999 0.5 | |
-3 30 0.444 0.846 0.508 0.6l 0.98
A, =0,4, =1,4, =0.00007,4, =0.1,a, =1.5,¢, =58 50 0.678 0.953 0.756 0.99 0.999
100 0913 | 0.966 | |
-4 30 0.12 0.38 0.154 0.179 0.684
A, =3.586508, 4, = 0.04306, 4, = 0.025213, 1, = 0.094029 50 0.134 0.541 0.26 0.474 0.854
a;=0.9,0,,=4.2 100 0.245 0.761 0.488 0.845 0.946
-5 30 0.141 0.451 0.231 0.247 0.8l
50 0.201 0.601 0.41 0.652 0.92
A =0,2, = 1,4, =-0.0075,4, = —0.03, &, = 1.5,a, =7.5
100 0.336 0.839 0.741 0.954 0.98
Table 1(3) Power of Overlap based test and Run Tests under Alternative Hypotheses. (2=0.05)
Test Modarres Test based
Case # n Runs based Bonferroni’s  and gastwirth  on kullback-
test on the n(E,) (1998) Test leibler
overlap W 50 information
6 30 0.051 0.161 0.034 0.033 0.191
A, =—0.116734, 4, = -0.351663, 1, = -0.13, 4, = -0.16, 50 0.055  0.174 0.04 0.055 0.225
a;=0.8,0,=11.4 100 0.053 0.21 0.059 0.12 0.331
-7 30 0.101 0.189 0.091 0.092 0.452
50 0.111 0.241 0.155 0.21 0.611
A4 =0,4,=-1,4,=-01,4, =-0.18,a, =2.0,a, =21.2
100 0.122 036l 0.336 0.478 0.737
-8 30 0.544 098 0.643 0.655 0.993
A =0,4, =—1,4, =—0.001,4, =-0.13,a, =3.16,a, =23.8 >0 0752 099 0888 0992 :
100 0.961 | 0.996 | |
- 30 0571 | 0.685 0676 0.993
50 0.8l | 0916 0.995 0.999
A4 =0,4, =-1,4, =-0.0001, 4, = -0.17c; = 3.88,, = 40.7 100 0963 | 0.999 | |

lllustration using base deficit data

We applied our new test procedure of symmetry to the base
deficit (bd) data as in Samawi et al.,’. The base deficit score refers
to a deficit of “base” present in the blood. Base deficit scores were
first established by Davis et al., The base deficit score has been
found correlated to many variables in the trauma population, such
as, mechanism of injury, the presence of intra-abdominal injury,
transfusion requirements, mortality, the risk of complications, and
the number of days spent in the intensive care unit as indicated by
Tremblay et al.,’® and Davis et al.,””.

The samples used in this illustration are part from the data collected
based on a retrospective study of the trauma registry at a level 1 trauma
center between January, 1998 and May, 2000. The primary concern

was to determine at what point we can differentiate between life and
death based on a base deficit score. A first step in this analysis is to
determine if there is a difference in location for the base deficit score
of those who survive and those who fail to survive. As is frequently the
case in such studies, the underlying distribution is assumed “normal”
or at least symmetric and a t-test or a nonparametric test would be
performed without checking the assumptions. In either case a test
of symmetry is almost never considered as a means of determining
how one may proceed in the analysis. Based on the conclusions of
a test of symmetry, the analyst can chose the most powerful test for
location. The goal is to test the hypothesis that, on average, the base
deficit score is the same for those who survive and those who fail to
survive their injuries. The injuries of interest in this group of patients
are either penetrating injury or blunt injury. However, before deciding
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on the test procedure, we need to check the assumptions of underlying
distribution of the base deficit for both penetrating injury and blunt
injury groups of patients. In particular, the assumption of symmetry
of the underlying distribution needs to be verified. The data will be
centered about the estimated measure of location to perform the tests
of symmetry.

Figure 1.1 and Figure 1.2 show the box plot for penetrating injury
and blunt injury groups for dead and alive patients respectively.

Table 2(1) Summery statistics for base deficit for dead patients

Copyright:
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Clearly there is some asymmetry on all four distributions. Also, Table
2.1 and Table 2.2 show summery statistics for penetrating injury and
blunt injury groups for dead and alive patients respectively. Table 2.3
shows the overlap based test, the runs test and the proposed test of
symmetry based on the Kullback-Leibler information of symmetry
for the underlying distribution for patients discharged alive and
dead patients of blunt trauma and penetrating trauma. We reject the
assumption of symmetry for underlying distribution of these groups.

Descriptives
Type of wound Statistic Std. error
Mean -10.81 0.846
95% Confidence Interval for Mean Lower Bound -12.49
Upper Bound -9.12
5% Trimmed Mean -10.68
Penetrating Median -10
Variance 52.904
Std. Deviation 7.274
Minimum -29
Maximum 9
Range 38
BD Interquartile Range 10
Skewness -0.21 0.279
Kurtosis 0.102 0.552
Blunt Mean -7.59 0.444
95% Confidence Interval for Mean Lower Bound -8.46
Upper Bound -6.71
5% Trimmed Mean -7.3
Median -6
Variance 60.65
Std. Deviation 7.788
Minimum -37
Maximum 23
Range 60
Interquartile Range 10
Skewness -0.518 0.139
Kurtosis 1.368 0.277
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Table 2(2) Summery statistics for base deficit for alive patients.

Copyright:
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Descriptives

Base deficit Type of wound Statistic Std. error
Mean -3.52 0.202
95% Confidence Interval for Mean Lower Bound -3.91
Upper Bound -3.12
penetrating 5% Trimmed Mean -3.06
Median -2.7
Variance 24.683
Std. Deviation 4.968
Minimum -28
Maximum 12
Range 40
Interquartile Range 5
Skewness -1.75 0.099
Kurtosis 5.079 0.199
Blunt Mean -1.8 0.059
95% Confidence Interval for Mean Lower Bound -1.92
Upper Bound -1.69
5% Trimmed Mean -1.61
Median -1.3
Variance 11.601
Std. Deviation 3.406
Minimum -27
Maximum 13
Range 40
Interquartile Range 3
Skewness -1.22 0.043
Kurtosis 439 0.085

Table 2(3) Test of symmetry with summary statistics

Injury type N Test Significance

Penetrating - Dead 74 3.989 <0.0001
Kullback-Leibler Information

Penetrating - alive 603 13.057 <0.0000

Penetrating - Dead 74 -2.09 0.0183
Overlap test*

Penetrating - alive 603 -16.928 <0.0001

Penetrating - Dead 74 -2.065 0.0195
Run test*

Penetrating - alive 603 -16.41 <0.0001

Blunt - Dead 306 13.92 <0.0001
Kullback-Leibler Information

Blunt - alive 3275 8.053 <0.0001
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Table Continued

Copyright:
©2016 Samawi et al.

51

Injury type N Test Significance
Blunt - Dead 306 -13.264 <0.0001
Overlap test*
Blunt - alive 3275 -79.074 <0.0001
Blunt - Dead 306 -10.29 <0.0001
Run test*
Blunt - alive 3275 -52.405 <0.0001
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