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 Introduction
Many statistical applications and inferences rely on the validity of 

the underlying distributional assumption. Symmetry of the underlying 
distribution is essential in many statistical inference and modeling 
procedures. There are several tests of symmetry in the literature; 
however most of these tests suffer from low statistical power. Tests 
have been suggested by Butler,1 Rothman & Woodroofe,2 Hill & 
Roa,3 Baklizi,4 and McWilliams.5 McWilliams5 showed, using 
simulation, that his runs test of symmetry is more powerful than those 
provided by Butler,1 Rothman & Woodroofe,2 and Hill & Roa3 for 
various asymmetric alternatives. However, Tajuddin6 introduced a 
distribution-free test for symmetry based on Wilcoxon two-sample 
test which is more powerful than the runs test.

 Moreover, Modarres & Gastwirth7 modified McWilliams5 runs test 
by using Wilcoxon scores to weight the runs. The new test improved 
the power for testing for symmetry about a known center but did not 
perform well when the asymmetry is focused in regions close to the 
median for a given distribution. Mira,8 introduced a distribution free 
test for symmetry based on Boferroni’s Measure. She showed that 
her test outperform tests introduced by Modarres & Gastwirth7 and 
Tajauddin.6 Recently, Samawi et al.,9 provided a test of symmetry 
based on a nonparametric overlap measure. They demonstrated that 
the test of symmetry based on an overlap measure outperformed other 
tests of symmetry in the literature, including the runs test. Samawi 
& Helu10 introduced a runs test of conditional symmetry which is 
reasonably powerful to detect even small asymmetry in the shape of 
the conditional distribution. In addition, the Samawi & Helu10 test 
does not need any approximation nor extra computations such as 
kernel estimation of the density function as in the other tests that are 
found in the literature. 

 This paper uses the Kullback-Leibler information to test for 
the symmetry of the underlying distribution. Let 1 2( ) and ( )f x f x be 
two probability density functions. Assume samples of observations 
are drawn from continuous distributions. The Kullback-Leibler 
discrimination information function is given by 

                                                                                                     		
				                                                  (1)

as defined by Kullback & Leibler.11 For simplicity we will write 
(1) as

1 2 11 1 1 12 1 2( , ) ( , ) ( , ),D f f D f f D f f= −  where 

( ) ( )11 1 1 1 1 12 1 2 1 2( , ) ( ) ln ( )  and ( , ) ( ) ln ( ) .D f f f x f x dx D f f f x f x dx
∞ ∞

−∞ −∞

= =∫ ∫

This measure can be directly applied to discrete distributions 
by replacing the integrals with summations. It is well known that 

1 2( , ) 0,D f f ≥ and the equality holds if and only if 1 2( ) ( )f x f x=  almost 
everywhere. The discrimination function 1 2( , )D f f  measures the 
disparity between

1 2
 and f f .

Many authors used the discrimination function (.,.)D  for testing 
goodness of fit of some distributions. For example see Alizadeh & 
Arghami.12,13 

In this paper we consider testing the null hypothesis of symmetry 
for an underlying absolutely continuous distribution (.)F with known 
location parameter and density denoted by (.)f 0: ( ) ( ) H f x f x= −  
versus : ( ) ( );for some .aH f x f x x≠ − Under the null hypothesis of 
symmetry, if we let 

1 2( ) ( ) and  ( ) ( )f x f x f x f x= = − then 
1 2

( , ) 0D f f =
.

Since kernel density estimation procedures are readily available 
in various statistical software packages such as SAS, STATA, S-Plus 
and R, we were interested in exploring the development of a new 
test of symmetry using kernel density estimation of 1 2( , )D f f . This 
paper will introduce a powerful test of symmetry based on Kullback-
Leibler discrimination information function. The Kullback-Leibler 
information test of symmetry and its asymptotic properties are 
introduced in Section 2. A simulation study is provided in Section 
3. Illustrations of the test using base deficit score data and final 
comments are given in Section 4.
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Test of symmetry based on the kullback-
leibler discrimination information function

Assume that a random sample, 1 2, ...., nX X X , is drawn from 
absolutely continuous distribution (.)F having known median, 
assumed to be 0. In the case of an unknown median, or if the center 
of the distribution is not known, then the data can be centered by a 
consistent estimate of the median. However, the implications of 
centering the data around a consistent estimator of the median on 
the asymptotic properties are not straightforward. Therefore, further 
investigations are needed to study the robustness of the proposed test 
of symmetry and compare it with other available tests of symmetry 
when the median is unknown. In this paper we will discuss only the 
case where the median of the underlying distribution is assumed 
known. 

Consider testing for symmetry 0: ( ) ( ) H f x f x= −  
versus : ( ) ( );for some .aH f x f x x≠ −    Let 

1 2( ) ( ) and  ( ) ( )f x f x f x f x= = −  . Under the null hypothesis, 

1 2( , ) 0D f f =  . An equivalent hypothesis for testing the symmetry 
is   0 1 2: ( , ) 0 H D f f =  1 2versus : ( , ) 0aH D f f >   let D̂  be a consistent 
nonparametric estimator of 1 2( , )D f f  . Under the null hypothesis of 
symmetry and some regularity assumptions, which will be discussed 
later in this paper, we propose the following test of symmetry:

                        0

ˆ 0 (0,1)
ˆ ˆ

D Lz N
Dσ
−

= → , 		           (2)

For large n, where ˆˆDσ is a consistent estimator of the standard 
error of D̂ . An asymptotic significant test procedure at levelα  is 
to reject 0H  if 0z zα> , where zα is the upper α  percentile of the 
standard normal distribution. 

Kernel estimation of  1 2( , )D f f  
For the i.i.d. sample 1 2, ...., nX X X , let 11 1 1

ˆ ( , )D f f  be an estimate 
of 11 1 1( , )D f f . To address which estimator of 11 1 1( , )D f f will be 
appropriate to our inference procedure we need to state some 
necessary conditions:

C1: f is continuous. (Smoothness conditions)

C2: f is k times differentiable. (Smoothness conditions)

C3:
11

([ ], [ ]) 1D X X < , where [X] is the integer part of X. (Tail 		
condition)

C4: ( ) 0 ( ) 0f xInf f x> >  (Tail condition)

C5: 2(ln )f f <∞∫  (Peak condition) (Note that, this is also a 		
mild tail condition.)

C6: f is bounded. (Peak condition)

Some suggested estimators for ( )11 1 1 1 1( , ) ( ) ln ( )D f f f x f x dx
∞

−∞

− = ∫ may 
be found in the literature. These include the plug-in estimates of 
entropy which are based on a consistent density estimate nf  of f. 
For example, the integral estimate of entropy introduced by Dmitriev 
& Tarasenko.14 Joe15 considers estimating 11 1 1( , )D f f− when 1f  is a 
multivariate pdf, but he points out that the calculation when 1̂f  is a 
kernel estimator gets more difficult when the dimension of the integral 
is more than two. He therefore excludes the integral estimate from 
further study. The integral estimator can however be easily calculated 
if, for example, 1̂f  is a histogram. 

The re-substitution estimate is proposed by Ahmad & Lin16 as 
follows:

	                     
11 1 1 1

1

1ˆ ˆ ˆˆ ( , ) ln ( ),
n

i
i

D f f f X
n =

− =− ∑  	         (3)

Where 1̂f  is a kernel density estimator? They showed the mean square 
consistency of (3), such that 2

11 1 1 11 1 1
ˆ ˆˆlim  {( ( , ) ( , )) } 0n E D f f D f f

∞
− =



 
Joe15 considers the estimation of 11 1 1( , )D f f− for multivariate pdfs 
by an entropy estimate of the re-substitution type (3), also based on 
a kernel density estimate. He obtained asymptotic bias and variance 
terms, and showed that non-unimodal kernels satisfying certain 
conditions can reduce the mean square error. His analysis and 
simulations suggest that the sample size needed for good estimates 
increases rapidly when the dimension of the multivariate density 
increases. His results rely heavily on conditions C4 and C6. Hall 
& Morton17 investigated the properties of an estimator of the type 
(3) both when nf  is a histogram density estimator and when it is 
a kernel estimator. For the histogram estimation they showed that 

1/2 2
11 1 1 11 1 1

ˆˆlim  ( ( , ) ( , )) (0, )n n D f f D f f N σ
∞

− 



under certain tail and 
smoothness conditions with.

		   
2 (ln( ( ))Var f Xσ = 	                         (4)

Other estimators using sampling-spacing are investigated by 
Tarasenko,18 Beirlant & van Zuijlen,19 Hall,20 Cressie,21 Dudewicz 
& van der Meulen,22 and Beirlant.23 Finally, other nonparametric 
estimator has been discussed by many authors including Vasicek,24 
Dudewicz & Van der Meulen,22 Bowman25 and Alizadeh.26 Among 
these various entropy estimators, Vasicek’s sample entropy has been 
most widely used in developing entropy based statistical procedures. 
However, deriving the asymptotic distribution for there D̂ is hard 
to establish. Therefore, in this paper we will adopt the kernel re-
substitution estimate which is proposed by Ahmad & Lin.16 

We will adopt the notation of Samawi et al.,9 Our proposed test 
of symmetry is as follow: Let 1 2, ...., nX X X  be a random sample 
from absolutely continuous distribution (.)F which is continuously 
differentiable with uniformly bounded derivatives and having known 
median. 

Let K be a kernel function satisfying the condition 

                         ( ) 1K x dx∞
−∞ =∫ .                                               (5)

For simplicity, the kernel K will be assumed to be a symmetric 
density function with mean 0 and finite variance; an example 
is the standard normal density. The kernel estimators for

( ) and ( ), 1,2,...,i if w f w i C− = , are:

		   
1

1ˆ ( )  
n i j

i
j

w x
f w KK nh h=

− − 
− = ∑  

 
	 (6)

and 

                                1

1ˆ ( )  
n i j

K i
j

w x
f w K

nh h=

− 
= ∑  

 
,	                                   	

						      (7)

Respectively, where C  is the number of bins and depends on the 
sample size. As in Samawi et al.,9 we suggest to take the integer of 
C n= . In addition, h is the bandwidths of the kernel estimators 
satisfying the conditions that 0, 0 and ( )h h nh> → →∞ as  n→∞ . There 
are many choices of the bandwidths ( h ). In our procedure we use the 
method suggested by Silverman27 Using the normal distribution as the 
parametric family, the bandwidths of the kernel estimators are 
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                                     1/50.9 ( )  h A n −= ,                              (8)

Where A =min{standard deviation of ( 1 2, ...., nx x x ), interquantile 
range of ( 1 2, ...., nx x x )/1.349}. This form of (8) is found to be adequate 
choices of the bandwidth for many purposes which minimizes the 
integrated mean squared error (IMSE), 

                          

2ˆ[ ( ) ( )] .KIMSE E f x f x dx= −∫
                        (9)     	

We will use the Samawi et al. [9] suggestion to calculate the bins 
as follows: Let 1 2( , ,..., )nR range x x x= , then bins will be selected as 

1 ,i i xw w δ−= +  where 2,...,i C= , 
1 1 2

min( , , ..., )
n

w x x x= and 
x

R
C

δ =
. 

Using the above kernel estimator, the nonparametric kernel 
estimator of 1 2( , )D f f under the null hypothesis is given by

	   	  
11 12

ˆ ( )ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ln , = ( ( ), ( )) ( ( ), ( )),ˆ ( )
K

K K K K K
K

f xD f x dx D f x f x D f x f x
f x

 
= − − ∫  −  		

				                                           (10)
Which can be approximated by? 

	
1 1

1 1ˆ ˆˆ ln ( ) ln ( )
C C

K i K i
i i

D f w f w
C C= =

= − −∑ ∑  	                            (11)

The approximate variance of D̂  is given by

	            1 1
2 2

ˆ ˆ( ln ( )) ( ln ( ))
ˆ( ) .

C C

K i K i
i i

Var f w Var f w
Var D

C C
= =

−∑ ∑
= +

Asymptotic properties of D̂

The nonparametric kernel estimator of 1 2( , )D f f  ( D̂ ) is based on 

the univariate kernel for density estimation, :K →  . The necessary 
regularity conditions imposed on the univariate kernel for density 
estimation are:

I.  ( ) 1.R K z dz=∫

II. ( ) 0 for any 1,..., 1, and | | ( ) . r
R Rz K z dz r z K z dzβ β= = − <∞∫ ∫

III.  2 ( ) .RR K z dz= <∞∫

IV. 0, 0 , ( ) and ( )
log
nhh h nh

n
> → →∞ →∞

These conditions may be found in Silverman27 (Chapter 3) or 
Wand & Jones28 (Chapter 2). 

To show consistency of D̂ , apply the kernel density asymptotic 
properties found in Silverman,27 (Chapter 3) or Wand & Jones,28 
(Chapter 2). Under assumptions 1-4 and assuming that the density 

:f →   is continuous at each iw , i=1, 2,… C,

     ˆ ˆ( ( )) (1)  and  ( ( )) (1)K i K iBias f w o Bias f w o− = =− +            (12)

  	 2 2( ) 1 ( ) 1ˆ ˆ( ( )) ( ) ( ) and ( ( )) ( ) ( ), i i
K i K i

f w f wVar f w K z dz o Var f w K z dz o
nh nh nh nh
−

− = + = +∫ ∫
 

					                   (13)

and for 0, 0 and ( )h h nh> → →∞ as  n→∞  
ˆ ˆ( ) ( ) and ( ) ( )K i i K i i

P Pf w f w f w f w− → − →  If f(.) 
uniformly continuous, then the kernel density estimate is 

strongly consistent. 	 Moreover, as in Ahmad & Lin,16 

2
11 11

ˆ ˆˆlim  {( ( ( ), ( )) ( ( ), ( ))) } 0,C K K K KE D f x f x D f x f x
∞

− =


  and 

hence 11 11
ˆ ˆˆ ( ( ), ( )) ( ( ), ( )), as K K K K

PD f x f x D f x f x C→ →∞   and 

12 12
ˆ ˆˆ ( ( ), ( )) ( ( ), ( )), as K K K K

PD f x f x D f x f x C− → − →∞ . However, 

since 11 12
ˆ ˆ ˆ ˆˆ ˆ ˆ( ( ), ( )) ( ( ), ( ))K K K KD D f x f x D f x f x= − −   therefore 

ˆ ( ( ), ( )), as .pD D f w f w C→ − →∞

 To drive the asymptotic distribution of D̂ , we will define 
1 2( , )D f f  as a functional 

			 
1 2 1 1 1 2 1 1 2 1( , ) ( ) ln( ( )) ( ) ln ( ) ln( ( )) ln ( )D f f f w f w dw f w f w dw f w dF f w dF

∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞

= − = −∫ ∫ ∫ ∫ .

Using the previously stated regularity conditions, some regularity 
conditions given by Serfing29 and assuming that the ˆGateaux 
derivatives of the functional 1 2( , )D f f  exist, we can show that the 
partial influence function of the functional 1 2( , )D f f 30 are as follows:

           
1 1 1 1 1 1( ; , ) ln ( ) ( ) ln ( ) ,L w F F f w f w f w dw

∞

−∞

= − ∫

and 

            
2 1 2 2 1 2( ; , ) ln ( ) ( ) ln ( ) .L w F F f w f w f w dw

∞

−∞

= − ∫  

Note that 

1 1 1 1 2 1 2 1( ; ( ), ( )) ( ) 0 and  ( ; ( ), ( )) ( ) 0.L w F w F w dF w L w F w F w dF w= =∫ ∫  
Now using this functional representation of 1 2( , )D f f , then as in 
Samawi et al.,30 and Serfing,29

2
1 2 ˆ

ˆ( ( , )) (0, ),
D

LC D D f f N σ− →

                                       
(14) 

Where    2 2 2
1 1 1 1 2 1 2 1ˆ ( ; , ) ( ; , )

D
L w F F dF L w F F dFσ = +∫ ∫  

A consistent estimate for 2
D̂

σ  is given by  

	
2 2 2

1 1 1 2 1 2ˆ
1 1

1 1ˆ ˆ ˆ ˆˆ ( ; , ) ( ; , ),
C C

D
i i

L w F F L w F F
C C

σ
= =

= +∑ ∑

Where, 

1 1 1 1 11 1 1 2 1 2 2 12 1 2
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( ; , ) ln ( ) ( ( ), ( )) and ( ; , ) ln ( ) ( ( ), ( )), 1,2,..., ,i i i i i i i iL w F F f w D f w f w L w F F f w D f w f w i C= − = − =

Where in our case 1 2( ) ( ) and ( ) ( )i i i if w f w f w f w= = − .

For discussions about different methods addressing the issue of 
the performance of kernel density estimation at the boundary, see Hall 
& Park.31

Simulation study
As in Samawi et al.,9 to gain some insight of our procedure, a 

simulation study was conducted to investigate the performance of 
our new test of symmetry based on D̂ . We compared our proposed 
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test of symmetry with the test proposed by McWilliams,5 Modarres 
& Gastwirth,32 Mira8 Bonferroni’s test, and Samawi et al.,9 tests of 
symmetry. 

As in McWilliams,5 the runs test is described as follows: 
For any random sample of size n, let (1) (2) ( ), ,... , nY Y Y denote the 
sample values ordered from the smallest to largest according to 
their absolute value (signs are retained), and 1 2, ,..., nS S S denote 
indicator variables designating the sign of the ( )jY values [

( )1 if  is nonnegative, 0 otherwisej jS Y= ]. Thus, the test statistic used 
for testing symmetry is  = the number of runs in 1 2, ,..., nS S S sequence=

2

1
n

j
j

I
=

+ ∑ , where 

	                                                          .

		           

1

1

0   if 
1   if  

j j
j

j j

S S
I

S S
−

−

== ≠
	

We reject the null hypothesis if *R  is smaller than a critical value 

( cα ) at the pre-specified value ofα . Moreover, Mira [8] Bonferroni’s 

test is 1 :( ) 2( )n n s nF X Xγ = − , where : 1 2( , ,..., )s n nX Median X X X= . The 

process is to reject the null hypothesis if 
1 1| ( )| ( , ),n

n c n
aF S F

n
γ γ≥

where

 

2 2 2 2 2
1 , , : ,1 1 12

1/5

4/5 4/5
[( /2) ]: [( /2) 1]:

1 2ˆ ˆ as , ( , ) 4 ( ) 4 , ( ) , ( ),  
1

( ), and 0.5.
2

n n

i n in c n n c n c n i s n n cF F
i i

n cn n n cn n

a z n S F D D S X X S X X I X X D
n n

n
X X c

c

α µ µγ σ σ
−

= =

+ + +

∑ ∑→ → ∞ = + − = − = − ≤ =
−

− =

The Modarres & Gastwirth32 test is the hybrid test of sign test in 
the first stage and a percentile-modified two-sample Wilcoxon see 
Gastwirth33 test in the second stage. Finally, Samawi et al.,9 test of 
symmetry is based on kernel estimate of the overlap measure. 

 In the following simulation, SAS version 9.3 {proc kde; 
method=srot} is used. As in McWilliams,5 the generalized lambda 
distribution see, Ramberg & Schmeiser34 is used in our simulation 
with following set of parameters:

1- 1 2 3 40, 0.197454, 0.134915, 0.134915, (Symmetric)λ λ λ λ= = = =

2- 1 2 3 40, 1, 1.4, 0.25, λ λ λ λ= = = =

3- 1 2 3 40, 1, 0.00007, 0.1,λ λ λ λ= = = =  

4- 1 2 3 43.586508, 0.04306, 0.025213, 0.094029,λ λ λ λ= = = =

5- 1 2 3 40, 1, 0.0075, 0.03,λ λ λ λ= =− =− =−

6- 1 2 3 40.116734, 0.351663, 0.13, 0.16,λ λ λ λ=− =− =− =−

7- 1 2 3 40, 1, 0.1, 0.18,λ λ λ λ= =− =− =−

8- 1 2 3 40, 1, 0.001, 0.13,λ λ λ λ= =− =− =−

9- 1 2 3 40, 1, 0.0001, 0.17.λ λ λ λ= =− =− =− 	  

To generate the observations we used 3 4
1

2

1 ( (1 ) , 1,..., ,i i ix u u i mλ λλ
λ

= + − − =

where iu a uniform random number. The significance level used 
in the simulation is 0.05,α= with sample sizes n=30, 50, and 100. 
To investigate the Type I error, the symmetric distributions used in 
the simulation are the first case of the generalized lambda and the 
normal. Our simulation is based on 5000 simulated samples. The 95% 
confidence intervals of the true probability of type I error under the 
null hypothesis with 0.05α=  are (0.04396, 0.05504).

Table 1.1 shows the estimated probability of type I error. Our test 
is an asymptotic test with a slight bias in D(., .) and in the variance 
estimation for small sample size. For sample sizes more than 30, 
the test seems to have an estimated probability of type I error close 
to the nominal value 0.05. However, Bonferroni’s test seems to be 
conservative test procedure, while Modarres, Gastwirth test is slightly 
conservative for small sample size. Table 1.2 and Table 1.3 show 
that using D(., .) based test is more powerful than McWilliams,5 
Bonferroni’s, Modarres & Gastwirth32 and Samawi et al.,9 tests in all 
of the presented cases. The efficiency increases as the sample size 
increases.

Note: The values of skewness 3( )α and kurtosis 4( )α are from 
McWilliams.5

Note: The values of skewness 3( )α and kurtosis 4( )α are from 
McWilliams.5

Table 1(1) Probability of Type I Error under the Null Hypothesis ( 0.05α= )

Distribution n Run 
tests

Test 
based 
on the 
overlap

Bonferroni’s 

1( )nFγ

Modarres 
and gastwirth 
(1998) test 

0.80W

Test based on 
kullback-leibler 
information

Case #1 generalized lambda 

1 2 3

4 3 4

0, 0.197454, 0.134915,

0.134915,  0, 3.0

λ λ λ

λ α α

= = =

= = =

30 0.046 0.056

1( )nFγ
0.03

0.80W
0.027 0.051

50 0.052 0.051 0.032 0.044 0.047

100 0.058 0.052 0.027 0.046 0.051

Normal (0, 1)

30 0.052 0.057 0.03 0.03 0.052

50 0.048 0.055 0.03 0.043 0.051

100 0.051 0.052 0.032 0.048 0.052
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Table 1(2) Power of Kullback-Leibler Information based test, with comparison with other tests Under Alternative Hypotheses ( 0.05α= )

Case # n Run 
test

Test 
based 
on the 
overlap

Bonferroni’s 
1( )nFγ

Modarres 
and 
gastwirth 
(1998) Test 

0.80W

Test based 
on kullback-
leibler 
information

-2

1 2 3 4 3 40, 1, 1.4, 0.25 =0.5, 2.2λ λ λ λ α α= = = = =

30 0.282 0.501 0.253 0.495 0.948

50 0.456 0.839 0.352 0.941 0.992
100 0.781 0.999 0.5 1 1

-3

1 2 3 4 3 40, 1, 0.00007, 0.1, 1.5, 5.8λ λ λ λ α α= = = = = =

30 0.444 0.846 0.508 0.61 0.98

50 0.678 0.953 0.756 0.99 0.999
100 0.913 1 0.966 1 1

-4

1 2 3 4

3 4

3.586508, 0.04306, 0.025213, 0.094029

0.9, 4.2

λ λ λ λ

α α

= = = =

= =

30 0.12 0.38 0.154 0.179 0.684

50 0.134 0.541 0.26 0.474 0.854

100 0.245 0.761 0.488 0.845 0.946

-5

1 2 3 4 3 40, 1, 0.0075, 0.03, 1.5, 7.5λ λ λ λ α α= = − = − = − = =

30 0.141 0.451 0.231 0.247 0.81

50 0.201 0.601 0.41 0.652 0.92

100 0.336 0.839 0.741 0.954 0.98

Table 1(3) Power of Overlap based test and Run Tests under Alternative Hypotheses. ( 0.05α= ) 

Case # n Runs 
test

Test 
based 
on the 
overlap

Bonferroni’s 
1( )nFγ

Modarres 
and gastwirth 
(1998) Test 

0.80W

Test based 
on kullback-
leibler 
information

-6

1 2 3 4

3 4

0.116734, 0.351663, 0.13, 0.16,

0.8, 11.4

λ λ λ λ

α α

= − = − = − = −

= =

30 0.051 0.161 0.034 0.033 0.191

50 0.055 0.174 0.04 0.055 0.225

100 0.053 0.21 0.059 0.12 0.331

-7

1 2 3 4 3 40, 1, 0.1, 0.18, 2.0, 21.2λ λ λ λ α α= = − = − = − = =

30 0.101 0.189 0.091 0.092 0.452

50 0.111 0.241 0.155 0.21 0.611

100 0.122 0.361 0.336 0.478 0.737

-8

1 2 3 4 3 40, 1, 0.001, 0.13, 3.16, 23.8λ λ λ λ α α= = − = − = − = =

30 0.544 0.98 0.643 0.655 0.993

50 0.752 0.999 0.888 0.992 1

100 0.961 1 0.996 1 1
-9

1 2 3 4 3 40, 1, 0.0001, 0.17 3.88, 40.7λ λ λ λ α α= = − = − = − = =

30 0.571 1 0.685 0.676 0.993

50 0.81 1 0.916 0.995 0.999

100 0.963 1 0.999 1 1

Illustration using base deficit data
We applied our new test procedure of symmetry to the base 

deficit (bd) data as in Samawi et al.,9. The base deficit score refers 
to a deficit of “base” present in the blood. Base deficit scores were 
first established by Davis et al.,35 The base deficit score has been 
found correlated to many variables in the trauma population, such 
as, mechanism of injury, the presence of intra-abdominal injury, 
transfusion requirements, mortality, the risk of complications, and 
the number of days spent in the intensive care unit as indicated by 
Tremblay et al.,36 and Davis et al.,37. 	

The samples used in this illustration are part from the data collected 
based on a retrospective study of the trauma registry at a level 1 trauma 
center between January, 1998 and May, 2000. The primary concern 

was to determine at what point we can differentiate between life and 
death based on a base deficit score. A first step in this analysis is to 
determine if there is a difference in location for the base deficit score 
of those who survive and those who fail to survive. As is frequently the 
case in such studies, the underlying distribution is assumed “normal” 
or at least symmetric and a t-test or a nonparametric test would be 
performed without checking the assumptions. In either case a test 
of symmetry is almost never considered as a means of determining 
how one may proceed in the analysis. Based on the conclusions of 
a test of symmetry, the analyst can chose the most powerful test for 
location. The goal is to test the hypothesis that, on average, the base 
deficit score is the same for those who survive and those who fail to 
survive their injuries. The injuries of interest in this group of patients 
are either penetrating injury or blunt injury. However, before deciding 

https://doi.org/10.15406/bbij.2016.03.00060


A test of symmetry based on the kernel kullback-leibler information with application to base deficit data 49
Copyright:

©2016 Samawi et al.

Citation: Samawi HM, Vogel R. A test of symmetry based on the kernel kullback-leibler information with application to base deficit data. Biom Biostat Int J. 
2016;3(2):44‒52. DOI: 10.15406/bbij.2016.03.00060

on the test procedure, we need to check the assumptions of underlying 
distribution of the base deficit for both penetrating injury and blunt 
injury groups of patients. In particular, the assumption of symmetry 
of the underlying distribution needs to be verified. The data will be 
centered about the estimated measure of location to perform the tests 
of symmetry. 

Figure 1.1 and Figure 1.2 show the box plot for penetrating injury 
and blunt injury groups for dead and alive patients respectively. 

Clearly there is some asymmetry on all four distributions. Also, Table 
2.1 and Table 2.2 show summery statistics for penetrating injury and 
blunt injury groups for dead and alive patients respectively. Table 2.3 
shows the overlap based test, the runs test and the proposed test of 
symmetry based on the Kullback-Leibler information of symmetry 
for the underlying distribution for patients discharged alive and 
dead patients of blunt trauma and penetrating trauma. We reject the 
assumption of symmetry for underlying distribution of these groups.

Table 2(1) Summery statistics for base deficit for dead patients 

Descriptives

Type of wound Statistic Std. error

Mean -10.81 0.846

95% Confidence Interval for Mean Lower Bound -12.49

Upper Bound -9.12

5% Trimmed Mean -10.68

Penetrating Median -10

Variance 52.904

Std. Deviation 7.274

Minimum -29

Maximum 9

Range 38

BD Interquartile Range 10

Skewness -0.21 0.279

Kurtosis 0.102 0.552

Blunt Mean -7.59 0.444

95% Confidence Interval for Mean Lower Bound -8.46

Upper Bound -6.71

5% Trimmed Mean -7.3

Median -6

Variance 60.65

Std. Deviation 7.788

Minimum -37

Maximum 23

Range 60

Interquartile Range 10

Skewness -0.518 0.139

Kurtosis 1.368 0.277
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Table 2(2) Summery statistics for base deficit for alive patients. 

Descriptives

Base deficit Type of wound Statistic Std. error

Mean -3.52 0.202

95% Confidence Interval for Mean Lower Bound -3.91

Upper Bound -3.12

penetrating 5% Trimmed Mean -3.06

Median -2.7

Variance 24.683

Std. Deviation 4.968

Minimum -28

Maximum 12

Range 40

Interquartile Range 5

Skewness -1.75 0.099

Kurtosis 5.079 0.199

Blunt Mean -1.8 0.059

95% Confidence Interval for Mean Lower Bound -1.92

Upper Bound -1.69

5% Trimmed Mean -1.61

Median -1.3

Variance 11.601

Std. Deviation 3.406

Minimum -27

Maximum 13

Range 40

Interquartile Range 3

Skewness -1.22 0.043

Kurtosis 4.39 0.085

Table 2(3) Test of symmetry with summary statistics 

Injury type N Test Significance

Kullback-Leibler Information
Penetrating - Dead 74 3.989 <0.0001

Penetrating - alive 603 13.057 <0.0000

Overlap test*
Penetrating - Dead 74 -2.09 0.0183

Penetrating - alive 603 -16.928 <0.0001

Run test*
Penetrating - Dead 74 -2.065 0.0195

Penetrating - alive 603 -16.41 <0.0001

Kullback-Leibler Information
Blunt - Dead 306 13.92 <0.0001

Blunt - alive 3275 8.053 <0.0001
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Injury type N Test Significance

Overlap test*
Blunt - Dead 306 -13.264 <0.0001

Blunt - alive 3275 -79.074 <0.0001

Run test*
Blunt - Dead 306 -10.29 <0.0001

Blunt - alive 3275 -52.405 <0.0001

Table Continued

Figure 1(1) Box plot to base deficit for dead patients.

Figure 1(2) Box plot to base deficit for alive patients.

The proposed test of symmetry based on the Kullback-Leibler 
information, appears to outperform the other tests of symmetry in the 
literature in terms of power. Our test is more sensitive to detect a slight 
asymmetry in the underlying distribution than other tests proposed 
in the literature. Moreover, the kernel density estimation literature 
is very rich and many of the proposed methods and the improved 
methods are available on statistical software, such as SAS™, S-plus, 
Stata and R. Since based on the Kullback-Leibler information can be 
used in multivariate cases as well as in univariate cases, our proposed 
test of symmetry can be extended to multivariate cases for diagonal 
symmetry, conditional symmetry and other types of symmetry.

Acknowledgement
None.

Conflict of Interest
None.

References
1.	 Butler CC. A test for symmetry using sample distribution function. The 

Annals of Mathematical Statistics. 1969;40:2211−2214.

2.	 Rothman ED, Woodroofe M. A Cramer-Von Mises type statistic for testing 
symmetry. The Annals of Mathematical Statistics. 1972;43:2035−2038.

3.	 Hill DL, Rao PV. Test of Symmetry based on Cramer-Von Mises statistics. 
Biometrika. 1977;64(3):489−494.

4.	 Baklizi A. A conditional distribution free runs test for symmetry. Journal 
of Nonparametric Statistics. 2003;15(6):713−718.

5.	 McWilliams TP. A distribution free test of symmetry based on 
a runs statistic. Journal of the American Statistical Association. 
1990;85(412):1130−1133.

6.	 Tajuddin IH. Distribution-Free test for symmetry based on Wilcox on 
two-sample test. J Applied Statistics. 1994;21(5):409−415.

7.	 Modarres R, Gastwirth JL. A modified runs test of symmetry. Statistics & 
Probability Letters. 1996;31(2):107−112.

8.	 Mira A. Distribution-free test for symmetry based on Bonferroni’s 
measure. Journal of Applied Statistics. 1999;26(8):959−971.

9.	 Samawi HM, Helu A, Vogel R. A nonparametric test of symmetry 
based on the overlapping coefficient. Journal of Applied Statistics. 
2011;38(5):885−898.

10.	 Samawi HM, Helu A. Distribution-Free Runs Test for Conditional 
Symmetry. Communications in Statistics Theory and Methods. 
2011;40(15):2709−2718.

11.	 Kullback S, Leibler RA. On information and sufficient. Annals of 
Mathematical Statistics. 1951;22(1):79−86.

12.	 Alizadeh Noughabi H, Arghami NR. Testing exponentially using 
transformed data. Journal of Statistical Computation and Simulation. 
2011a;81(4):511−516.

13.	 Alizadeh NH, Arghami NR. Monte Carlo comparison of five exponentially 
tests using different entropy estimates. Journal of Statistical Computation 
and Simulation. 2011b;80(11):1579−1592.

14.	 Dmitriev, Yu G, Tarasenko FP. On the estimation functions of 
the probability density and its derivatives. Theory Probab Appl. 
1973;18:628−633.

15.	 Joe H. On the estimation of entropy and other functional of a multivariate 
density. Ann Inst Statist Math. 1989;41(4):683−697.

16.	 Ahmad IA, Lin PE. A nonparametric estimation of the entropy for 
absolutely continuous distributions. Information Theory, IEEE 
Transactions. 1976;22(3):372−375.

17.	 Hall P, Morton SC. On the estimation of the entropy. Ann Inst Statist 
Math. 1993;45(1):69−88.

https://doi.org/10.15406/bbij.2016.03.00060
http://www.jstor.org/stable/2345324?seq=1#page_scan_tab_contents
http://www.jstor.org/stable/2345324?seq=1#page_scan_tab_contents
http://www.jstor.org/stable/2289611?seq=1#page_scan_tab_contents
http://www.jstor.org/stable/2289611?seq=1#page_scan_tab_contents
http://www.jstor.org/stable/2289611?seq=1#page_scan_tab_contents
http://www.sciencedirect.com/science/article/pii/S016771529600020X
http://www.sciencedirect.com/science/article/pii/S016771529600020X
https://www.researchgate.net/publication/2783935_Distribution-free_test_for_symmetry_based_on_Bonferroni's_Measure
https://www.researchgate.net/publication/2783935_Distribution-free_test_for_symmetry_based_on_Bonferroni's_Measure
https://www.researchgate.net/publication/227618119_A_nonparametric_test_of_symmetry_based_on_the_overlapping_coefficient
https://www.researchgate.net/publication/227618119_A_nonparametric_test_of_symmetry_based_on_the_overlapping_coefficient
https://www.researchgate.net/publication/227618119_A_nonparametric_test_of_symmetry_based_on_the_overlapping_coefficient
https://www.researchgate.net/publication/259356818_Distribution-Free_Runs_Test_for_Conditional_Symmetry
https://www.researchgate.net/publication/259356818_Distribution-Free_Runs_Test_for_Conditional_Symmetry
https://www.researchgate.net/publication/259356818_Distribution-Free_Runs_Test_for_Conditional_Symmetry
http://www.csee.wvu.edu/~xinl/library/papers/math/statistics/Kullback_Leibler_1951.pdf
http://www.csee.wvu.edu/~xinl/library/papers/math/statistics/Kullback_Leibler_1951.pdf
https://www.researchgate.net/publication/3082726_A_Nonparametric_Estimation_of_the_Entropy_for_Absolutely_Continuous_Distributions
https://www.researchgate.net/publication/3082726_A_Nonparametric_Estimation_of_the_Entropy_for_Absolutely_Continuous_Distributions
https://www.researchgate.net/publication/3082726_A_Nonparametric_Estimation_of_the_Entropy_for_Absolutely_Continuous_Distributions
http://www.ism.ac.jp/editsec/aism/pdf/045_1_0069.pdf
http://www.ism.ac.jp/editsec/aism/pdf/045_1_0069.pdf


A test of symmetry based on the kernel kullback-leibler information with application to base deficit data 52
Copyright:

©2016 Samawi et al.

Citation: Samawi HM, Vogel R. A test of symmetry based on the kernel kullback-leibler information with application to base deficit data. Biom Biostat Int J. 
2016;3(2):44‒52. DOI: 10.15406/bbij.2016.03.00060

18.	 Tarasenko FP. On the evaluation of an unknown probability density 
function, the direct estimation of the entropy from independent observations 
of a continuous random variable, and the distribution-free entropy test of 
goodness-of-fit. Proceedings of the IEEE. 1968;56(11):2052−2053.

19.	 Beirlant J. Limit theory for spacing statistics from general univariate 
distributions. Pub Inst Stat Univ Paris XXXI fasc. 1985;1:27−57.

20.	 Hall P. Limit theorems for sums of general functions of m-spacing. Math 
Proc Camb Phil Soc. 1984;96(3):517−532.

21.	 Cressie N. The minimum of higher order gaps. Australian Journal of 
Statistics. 1977;19(2):132−143.

22.	 Dudewicz E, Van der Meulen E. Entropy based tests of uniformity. 
Journal of American Statistical Association. 1981;76(376):967−974.

23.	 Beirlant J, Zuijlen MCA. The empirical distribution function and strong 
laws for functions of order statistics of uniform spacings. Journal of 
Multivariate Analysis. 1985;16(3):300−317. 

24.	 Vasicek O. A test for normality based on sample entropy. Journal of the 
Royal Statistical Society. 1976;38(1):54−59.

25.	 Bowman AW. Density based tests for goodness-of-fit. Journal of 
Statistical Computation and Simulation. 1992;40:1−13.

26.	 Alizadeh Noughabi H. A new estimator of entropy and its application 
in testing normality. Journal of Statistical Computation and Simulation. 
2010;80(10):1151−1162.

27.	 Silverman BW. Density estimation for statistics and data analysis. 
London Chapman and Hall; 1986.

28.	 Wand MP, Jones MC. Kernel Smoothing London. Chapman and Hall; 
1995.

29.	 Serfing RJ. Approximation theorems of mathematical statistics. USA: 
John Wiley & Sons, Inc; 1980.

30.	 Samawi HM, Woodworth GG, Lemke J. Power estimation for two-sample 
tests using importance and antithetic resampling. Biometrical Journal. 
1998;40(3):341−354.  

31.	 Hall P, Park BU. New methods for bias correction at endpoints and 
boundaries. The Annals of Statistics. 2002;30(5):1460−1479.

32.	 Modarres R, Gastwirth JL. Hybrid test for the hypothesis of symmetry. 
Journal of Applied Statistics. 1998;25(6):777−783.

33.	 Gastwirth JL. Percentile modification of two sample ranked test. Journal 
of the American Statistical Association. 1965;60(312):1127−1141.

34.	 Ramberg JS, Schmeiser BW. An approximate method for generating 
Asymmetric random variables. Communications of the ACM. 
1974;17:78−82.

35.	 Davis JW, Shackford SR, Mackersie RC, et al. Base deficit as a guide to 
volume Resuscitation. J Trauma. 1988;28(10):1464−1467.

36.	 Tremblay LN, Feliciano DV, Rozycki GS. Assessment of initial base 
deficit as a predictor of outcome: mechanism does make a difference. Am 
Surg. 2002;68(8):689−694.

37.	 Davis JW, Mackersie RC, Holbrook TL, et al. Base deficit as an indicator 
of significant abdominal injury. Ann Emerg Med. 1991;20(8):842−844.

https://doi.org/10.15406/bbij.2016.03.00060
https://www.researchgate.net/publication/231888263_Limit_theorems_for_sums_of_general_functions_of_m-spacings
https://www.researchgate.net/publication/231888263_Limit_theorems_for_sums_of_general_functions_of_m-spacings
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-842X.1977.tb01280.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-842X.1977.tb01280.x/abstract
http://www.jstor.org/stable/2287597?seq=1#page_scan_tab_contents
http://www.jstor.org/stable/2287597?seq=1#page_scan_tab_contents
http://www.sciencedirect.com/science/article/pii/0047259X85900235
http://www.sciencedirect.com/science/article/pii/0047259X85900235
http://www.sciencedirect.com/science/article/pii/0047259X85900235
http://www.jstor.org/stable/2984828?seq=1#page_scan_tab_contents
http://www.jstor.org/stable/2984828?seq=1#page_scan_tab_contents
https://www.researchgate.net/publication/265163125_A_new_estimator_of_entropy_and_its_application_in_testing_normality
https://www.researchgate.net/publication/265163125_A_new_estimator_of_entropy_and_its_application_in_testing_normality
https://www.researchgate.net/publication/265163125_A_new_estimator_of_entropy_and_its_application_in_testing_normality
https://www.researchgate.net/publication/230207965_Power_Estimation_for_Two-Sample_Tests_Using_Importance_and_Antithetic_Resampling
https://www.researchgate.net/publication/230207965_Power_Estimation_for_Two-Sample_Tests_Using_Importance_and_Antithetic_Resampling
https://www.researchgate.net/publication/230207965_Power_Estimation_for_Two-Sample_Tests_Using_Importance_and_Antithetic_Resampling
http://www.jstor.org/stable/1558721?seq=1#page_scan_tab_contents
http://www.jstor.org/stable/1558721?seq=1#page_scan_tab_contents
http://www.tandfonline.com/doi/abs/10.1080/02664769822765?journalCode=cjas20
http://www.tandfonline.com/doi/abs/10.1080/02664769822765?journalCode=cjas20
http://www.jstor.org/stable/2283411?seq=1#page_scan_tab_contents
http://www.jstor.org/stable/2283411?seq=1#page_scan_tab_contents
http://www.ncbi.nlm.nih.gov/pubmed/3172306
http://www.ncbi.nlm.nih.gov/pubmed/3172306
http://www.ncbi.nlm.nih.gov/pubmed/12206603
http://www.ncbi.nlm.nih.gov/pubmed/12206603
http://www.ncbi.nlm.nih.gov/pubmed/12206603
http://www.ncbi.nlm.nih.gov/pubmed/1854065
http://www.ncbi.nlm.nih.gov/pubmed/1854065

	Title
	Abstract
	Keywords
	Introduction
	Test of symmetry based on the kullback-leibler discrimination information function
	imulation study
	Illustration using base deficit data
	Acknowledgement
	Conflict of Interest
	References
	Figure 1(1) 
	Figure 1(2) 
	Table 1(1)
	Table 1(2) 
	Table 1(3)
	Table 2(1) 
	Table 2(2) 

