Second Order Optimality of Sequential Designs with Application in Software Reliability Estimation

Abstract
We propose three efficient sequential designs in the software reliability estimation. The fully sequential design the multistage sequential design and the accelerated sequential design. These designs make allocation decisions dynamically throughout the testing process. We then refine these estimated reliabilities in an iterative manner as we sample. Monte Carlo simulation seems to indicate that these sequential designs are second order optimal.

Keywords: Software reliability, Partition testing, Fully sequential design, Multistage sequential design, Accelerated sequential design.

Introduction
Reliability of a system is an important aspect of any system design since any user of the system would expect some type of guarantee that the system will function to some level of confidence. Failing to meet such guarantee will result in disastrous consequences. On the other hand, overly exceeding such guarantee level may incur additional and unnecessary expense to the developers. Moreover, for any non-trivial software system, an exhaustive testing among the entire input domain can be very expensive. By adopting the partition testing strategy, we attempt to break up the testable input domain of possible test cases into partitions, which must be non-overlapping, such that if test case i belongs to partition j, then no partition other than j will contain i. Sayre and Poore[11] have given several possible mechanics to partition the domain into finitely many subdomains, $X = \{1, \text{if test taken from partition} i \text{is processed correctly} ; 0, \text{otherwise}\}$, such that $D = \bigcup_{i=1}^{k} D_i \cup D_j = \emptyset, i \neq j$

which allows us to define the system reliability by a weighted sum of reliabilities of these subdomains, i.e. $R = \sum_{i=1}^{k} p_i R_i$

Where R denotes the system reliability and R_i is the reliability of each subdomain D_i; and p_i, parameters of the operational profile is the likelihood of this test case belongs to partition D_j, which are assumed to be known [12]. As mentioned above, a complete testing of any software system of non-trivial size is practically impossible, R_i are usually unknown parameters to us. So as to gain knowledge about R_i, we must distribute the k test cases among these k partitions, and generate reasonable estimates for each R_i. Specifically, we denote n_1, n_2, \ldots, n_k as sizes of the samples which are taken from subdomain D_1, D_2, \ldots, D_k, respectively, where $\sum_{i=1}^{k} n_i = N$.

We model the outcome of the j^{th} taken from the i^{th} partition as a Bernoulli random variable X_{ij} such that:

$$X_{ij} = \begin{cases} 1, & \text{if test taken from partition} i \text{is processed correctly} \\ 0, & \text{otherwise} \end{cases}$$

and each X_{ij} follows a Bernoulli distribution with parameter R_i. Then, the estimate of the overall system reliability \hat{R}, denoted by \hat{R} can thus be defined as:

$$\hat{R} = \frac{\sum_{i=1}^{k} n_i \hat{R}_i}{n_i}$$

where \hat{R}_i is the estimate of R_i after n_i test cases have been allocated to partition such that:

$$\hat{R}_i = \frac{\sum_{j=1}^{n_i} x_{ij}}{n_i}$$

and

$$Var(\hat{R}) = \sum_{i=1}^{k} p_i^2 R_i (1 - R_i) n_i$$

Optimal Sampling Scheme
Ideally, we would like to execute all possible test paths through the software and determine the true overall reliability of the system. In practice though, resources are often limited, sample test cases must be chosen and allocated strategically to attain the best reliability estimate possible given all kinds of constraints. One of the criteria of distributing test cases among the partitions, which proceeds from rewriting (1.1) as follows:

$$Var(\hat{R}) = \frac{\sum_{i=1}^{k} p_i^2 R_i (1 - R_i) n_i}{N} + \frac{1}{N} \sum_{i=1}^{k} \sum_{j=1}^{n_i} \left[n_j p_i \sqrt{R_i (1 - R_i)} - n_j p_i \sqrt{R_i (1 - R_j)} \right]^2$$
which is bounded below by the first term:

\[\text{Var}(\hat{R}) \geq \frac{\sum_{i=1}^{k} n_i \sqrt{p_i R_i (1 - R_i)}}{N} \]

with equality of (2.1) to hold is and only if:

\[\frac{n_i}{n_j} = \frac{p_i \sqrt{R_i (1 - R_i)}}{p_j \sqrt{R_j (1 - R_j)}} \]

for all. Hence, the optimal allocation is determined by:

\[\frac{n_i}{N} = \frac{n_i}{\sum_{j=1}^{k} n_j \sqrt{R_j (1 - R_j)}} \]

for \(i = 1, 2, \ldots, k - 1 \), and

\[n_k = N - \sum_{i=1}^{k-1} n_i \]

and the variance incurred by this optimal allocation is:

\[\text{Var}(\hat{R}) = \frac{\sum_{i=1}^{k} p_i \sqrt{R_i (1 - R_i)}}{N} \]

Second Order Optimality of Sequential Designs with Application in Software Reliability Estimation

Multistage Sequential Sampling

By adopting a fully Bayesian approach with Beta priors, Rekab, Thompson and Wei [6] proposed a multistage sequential design shown to be first order optimal. Instead of making an allocation decision for each test at a time, the multistage sequential sampling allocates test cases among the partitions in stages in batches, where and are both pre-specified. The multistage sequential design is defined as follows:

Stage 1:

We start with an initial sample of test cases, which are allocated among the partitions with a balanced allocation scheme, such that:

\[S_{1,i} = \frac{S_i}{k} \]

and estimate the reliability for partition by:

\[\hat{R}_{1,i} = \sum_{i=1}^{N} p_i \sqrt{R_i (1 - R_i)} \]

Stage 2 through L:

At stage \(j \), \(2 \leq j \leq L \), for partition \(i = 1, 2, \ldots, k - 1 \), the test cases are distributed by the following way:

\[S_{j,i} = \sum_{i=1}^{j-1} S_{j-1,i} \]

and

\[S_{j,k} = \sum_{i=1}^{j-1} S_{j-1,i} \]

where

\[\bar{S} \]

At the final stage, the cumulative number of tests allocated to partition is:

\[N_{i} = \min \left\{ N - \sum_{j=1}^{k-1} S_{L-1,j}, \max \left\{ \bar{X} \bar{C}(\bar{S}_{L-1}), \bar{S}_{L-1,i} \right\} \right\} \]

and

\[N_{k} = N - \sum_{i=1}^{k-1} N_{i} \]
Therefore, the estimate for the whole system is finally obtained as:

\[
\hat{k}^i = \sum_{j=1}^{L} p_j \hat{R}_{L,j}
\]

At each stage, \(S_i \) must satisfy the two conditions as \(S_i \).

Stage L:

In the final stage, we adopt a fully sequential approach by allocating one test from partition \(i \), if for all,

\[
\frac{n_{i,j}}{n_i} < \frac{p_j \sqrt{R_{j,i}(1-R_{j,i})}}{p_i \sqrt{R_{i,j}(1-R_{i,j})}}
\]

until all the test cases have been allocated. Note that \(n_{i,j}, n_i \) are the cumulative test cases allocated to partition \(i \) and \(\sum_j n_{i,j} \) after the allocations of a total of test cases, where

\[
\sum_{j=1}^{L-1} S_j \leq L \sum_{j=1}^{L-1} S_{j,i} + N - \sum_{j=1}^{L-1} S_j
\]

Therefore, the estimate for the whole system is finally obtained as:

\[
\hat{k} = \sum_{i=1}^{k} p_i \hat{R}_{L,i}
\]

Accelerated Sampling Scheme

By adopting a fully Bayesian approach with Beta priors, Rekab, Thompson and Wei [6] proposed an accelerated sequential design shown to be first order optimal. The accelerated sampling scheme combines the fully sequential sampling scheme and the multistage sampling scheme. It is defined as follows:

Stage 1:

The procedure starts with an initial sample \(S_1 \), which satisfies the conditions specified in (4.1). Then, allocate equally among partitions \(S_{1,j} = S_1 / k \).

Stage 2 through \(L-1 \):

At stage \(j \), \(2 \leq j \leq L-1 \), for partition \(i = 1, 2, \ldots, k-1 \), the test cases are distributed by the following way:

\[
S_{j,i} = \left(\frac{j}{\sum_{i=1}^{k-1} S_{j,i}} \right) \tilde{C}_j \left(\sum_{i=1}^{k-1} S_{j,i} \right)
\]

and

\[
S_{j,k} = \left(\sum_{i=1}^{k-1} S_{j,i} \right) - S_{j,k-1}
\]

where

\[
\sum_{j=1}^{L-1} S_{j} = \sum_{j=1}^{L-1} \tilde{S}_j
\]

Table I, II, III seem to indicate that the speed \(N^2 \cdot (\text{Var}(\tilde{A}) - \text{Var}(O)) \) is bounded.

Optimality of Sequential Designs

First order optimality of these three sequential designs was established by Rekab, Thompson and Wu [5],[6],[7], although the focus here is on minimizing the variance incurred by the sequential designs rather than minimizing the Bayes risk incurred by these designs. For estimating the mean difference of two independent normal populations, Woodroofe and Hardwick [12] adopted a quasi-Bayesian approach. They determined an asymptotic lower bound for the integrated risk and proposed a three-stage design that is second-order optimal. For estimating the mean difference of two general one-parameter exponential family, Rekab and Tahir [10] adopted a fully Bayesian approach with conjugate priors. They determined an asymptotic second order lower bound for the Bayes risk.

Monte Carlo Simulations

We consider the case where the test domain is partitioned into two subdomains \(D_1 \) and \(D_2 \) with reliability \(R_1 \) and \(R_2 \) respectively with equal usage probabilities \(P_1, P_2 \). Second order optimality of the three sequential designs is investigated through Monte Carlo simulations.

Table I. \(N^2 \cdot (\text{Var}(\tilde{A}) - \text{Var}(O)) \) by Fully Sequential Scheme

<table>
<thead>
<tr>
<th>((R_1, R_2))</th>
<th>(N = 300)</th>
<th>(N = 500)</th>
<th>(N = 800)</th>
<th>(N = 2000)</th>
<th>(N = 5000)</th>
<th>(N = 8000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1, 0.9</td>
<td>28.1562</td>
<td>3.2104</td>
<td>0.7390</td>
<td>2.4225</td>
<td>9.3040</td>
<td>0.7133</td>
</tr>
<tr>
<td>0.5, 0.2</td>
<td>29.0380</td>
<td>6.1020</td>
<td>0.6300</td>
<td>7.9375</td>
<td>4.6700</td>
<td>4.0500</td>
</tr>
<tr>
<td>0.5, 0.5</td>
<td>1.5972</td>
<td>0.1460</td>
<td>0.2120</td>
<td>0.9125</td>
<td>0.5120</td>
<td>0.4933</td>
</tr>
<tr>
<td>0.5, 0.9</td>
<td>80.7747</td>
<td>71.9032</td>
<td>19.9510</td>
<td>7.9600</td>
<td>5.7960</td>
<td>1.2666</td>
</tr>
<tr>
<td>0.9, 0.3</td>
<td>64.0246</td>
<td>53.8008</td>
<td>5.5497</td>
<td>3.2565</td>
<td>15.2546</td>
<td>2.6517</td>
</tr>
</tbody>
</table>

Table II. $N^2 \times \left(\text{Var} (\hat{\lambda}) - \text{Var} (\lambda) \right)$ by Multistage Scheme

<table>
<thead>
<tr>
<th>(R_1, R_2)</th>
<th>$N = 300$</th>
<th>$N = 500$</th>
<th>$N = 800$</th>
<th>$N = 2000$</th>
<th>$N = 5000$</th>
<th>$N = 8000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1, 0.9</td>
<td>10.9835</td>
<td>0.0288</td>
<td>4.0718</td>
<td>55.7962</td>
<td>2.3320</td>
<td>1.8422</td>
</tr>
<tr>
<td>0.5, 0.2</td>
<td>11.8285</td>
<td>0.0459</td>
<td>1.7507</td>
<td>0.4568</td>
<td>0.4732</td>
<td>0.1664</td>
</tr>
<tr>
<td>0.5, 0.5</td>
<td>37.6665</td>
<td>31.6257</td>
<td>17.6417</td>
<td>3.6377</td>
<td>6.8483</td>
<td>9.2952</td>
</tr>
<tr>
<td>0.9, 0.3</td>
<td>20.2034</td>
<td>2.8635</td>
<td>7.6161</td>
<td>3.1589</td>
<td>11.7869</td>
<td>5.2018</td>
</tr>
</tbody>
</table>

Table III. $N^2 \times \left(\text{Var} (\hat{\lambda}) - \text{Var} (\lambda) \right)$ by Accelerated Scheme

<table>
<thead>
<tr>
<th>(R_1, R_2)</th>
<th>$N = 300$</th>
<th>$N = 500$</th>
<th>$N = 800$</th>
<th>$N = 2000$</th>
<th>$N = 5000$</th>
<th>$N = 8000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1, 0.9</td>
<td>30.5713</td>
<td>6.5870</td>
<td>6.4568</td>
<td>17.4023</td>
<td>2.1138</td>
<td>1.0098</td>
</tr>
<tr>
<td>0.5, 0.2</td>
<td>8.1424</td>
<td>6.1346</td>
<td>7.1683</td>
<td>0.8968</td>
<td>0.1462</td>
<td>2.1009</td>
</tr>
<tr>
<td>0.5, 0.5</td>
<td>0.03801</td>
<td>0.2328</td>
<td>0.0319</td>
<td>0.7025</td>
<td>0.0640</td>
<td>0.0392</td>
</tr>
<tr>
<td>0.5, 0.9</td>
<td>37.6665</td>
<td>31.6257</td>
<td>17.6417</td>
<td>3.6377</td>
<td>6.8483</td>
<td>9.2952</td>
</tr>
<tr>
<td>0.9, 0.3</td>
<td>48.4148</td>
<td>13.8170</td>
<td>7.8473</td>
<td>8.4656</td>
<td>5.8734</td>
<td>1.6708</td>
</tr>
</tbody>
</table>

Conclusion

Second optimal designs are more efficient than the first order optimal designs especially when the total number of cases is very large. This is the main argument that led us to investigate the second order optimality of these three dynamic designs. Simulation studies seem to indicate that these designs are second order optimal. We conjecture that second order optimally may be obtained theoretically as well.

It is very common in parametric estimation to use the squared error loss. However, in reliability estimation one should distinguish between the cost of overestimating and underestimating the system reliability. Examples of practical loss functions were presented by Stüger[2]:

\[
I(\hat{\lambda}, \lambda) = c_o (\hat{\lambda} - \lambda)^2 I(\hat{\lambda} > \lambda) + c_a (\lambda - \hat{\lambda})^2 I(\hat{\lambda} < \lambda)
\]

and by Granger[1]:

\[
I(\hat{\lambda}, \lambda) = c_o (\hat{\lambda} - \lambda) I(\hat{\lambda} > \lambda) + c_a (\lambda - \hat{\lambda}) I(\hat{\lambda} < \lambda)
\]

where c_o represents the overestimation and c_a the underestimation costs, respectively.

References