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Abbreviations: PSS, poly (sodium 4-styrenesulfonate); SDBS, 
sodium dodecyl benzene sulfonate; CDJP, controlled double-jet pre-
cipitation; BSP, betamethasone sodium phosphate; Gly, glycine; EG, 
ethylene glycol; PAH, poly (allylamine hydrochloride); PUA, poly 
(urethane-amine); CMC, carboxylmethyl cellulose; CMCh, carboxy-
methyl chitosan

Introduction
Calcium carbonate (CaCO3) is an abundant mineral that has several 

uses in paper,1 Portland cement2 and steel making,3 as agricultural 
input for soil modification4 and food additive in soy milk and dairy 
products. Due to its high biocompatibility, CaCO3 is also employed 
in many pharmaceutical (anti-acid, dietary supplement for child 
and postmenopausal women), biological (scaffolds for cellular and 
bacterial growth) and biomedical (bioactive material for drug delivery, 
base for orthodontic cements) applications.5–9 Its particles can be 

found as three different polymorphs (vaterite, µ-CaCO3, aragonite, 
λ-CaCO3, and calcite, β-CaCO3) in a wide variety of size, shape and 
crystalline structure of different properties and characteristics.

Calcite is of the most common minerals on Earth due to its 
thermodynamic stability. It is the main constituent of sedimentary 
limestone rocks and has a rhombohedra crystalline structure.10 
Aragonite (also orthorhombic) occurs in the skeletal parts of calcareous 
organisms,11 and in the by-products of the some denitrifying bacteria 
(“Bacterium calcis”, or “Pseudomonas calcis 6”12). Vaterite can be 
found in eggshells, salmon otoliths in freshwater, as component of 
some organism’s endoskeleton and has been observed as a constituent 
of salts found in bile.11,13 Recent researchers found that vaterite 
is composed of a major phase of hexagonal symmetry filled with 
amorphous nanodomains.14 Differently from calcite and aragonite 
polymorphs that have faceted crystals, vaterite particles are usually 
spherical or irregular15 (Figure 1).
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Abstract

Calcium carbonate (CaCO3) precipitated particles present huge applications in drug 
delivery systems because their characteristics (such as size distribution, crystalline 
phase and specific surface area) can be precisely tailored during the synthesis. Besides 
this, most of the processing methods present competitive costs and produce highly 
biocompatible materials. This work reviewed briefly some of the many chemical 
and biological synthesis methods for CaCO3 nano-microparticles as well as their 
combination with different macromolecules (active principles, polyelectrolytes and 
DNA)..
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*A, average diameter; B, crystalline phase; C, crystalline system
Figure 1 The typical shapes of calcium carbonate (CaCO3) particles.
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Recently, vaterite particles were pointed out as having a huge 
potential for being use as drug delivery carriers and as bioactive 
material.16,17 Such potential arises from its lower thermodynamic 
stability, high solubility, and defect-rich microstructure that can 
accommodate many host-molecules and release it in a controlled 
way. Studies show that vaterite particles can be encapsulated or 
linked with various biological substances such as biopolymers (CMC, 
alginate), proteins, poly electrolytes and molecules such as DNA.18–21 
Since the drug releasing parameters presented a strong relationship 
with particles’ characteristics (size distribution, specific surface area, 
internal porosity, and morphology) that are set during their synthesis, 
this work presents a brief review of the many methods employed 
to produce vaterite particles for biomedical application. We also 
collected useful information regarding the combinations of CaCO3 
particle-active principle for drug delivery applications and their 
potential toxicity in some cases.

Discussion
Methods for CaCO3 particles’ synthesis

There are several known synthesis methods for obtaining 
nanometer and micrometer materials that can be divided from top 
down to bottom up, where the larger scale can be manipulated to the 
desired scale and from the bottom up where the material is grown 
with atom control for atom (or molecule for molecule) respectively.22 
The synthesis of calcium carbonate can be based on chemical.16,23,24 or 
microbiological.7,25–28 methods.

The most commonly used methods are those based on reactions in 
solution, leading to the formation of colloids in dispersed particles in a 
suitable solvent. Guo et al.29 showed the influence of several solvents 
on the crystalline phase of calcium carbonate. They demonstrated that 
using DMF as solvents there was produced calcite with polyhedral 
format. Mixing DMF (dimethylformamide) and methanol resulted in 
small rectangles with a small cavity in the center of each face. When 
DMF/n-propanol was employed, there were small beads of vaterite 
phase, and by adding DMF and ethanol the beads had larger diameters.

Chen et al.30 used a reaction of CaCl2+Na2CO3 at different 
temperatures and observed that at 25˚C there is calcite phase. It was 
obtained at 80˚C, the aragonite phase. For the formation of the vaterite 
phase, it was necessary to add an amino acid (glycine).31 Glycine is 
used as an additive to induce the crystallization of vaterite, because it 
is a less stable crystalline phase, the addition of chemical molecules is 
necessary for the synthesis of vaterite. Vaterite can be stabilized with 
various compounds, among them glycine (cited above),31 proteins,19 
anionic surfactant (sodium dodecyl benzene sulfonate (SDBS)32 and 
poly (4-sodium styrene sulfonate) (PSS).24 

In the double-jet method or CDJP (controlled double-jet 
precipitation) the cation and anion solutions are added simultaneously 
through separate lines to a stirred solution of a lyophilic polymer.33 This 
method was used by Jiang et al.34 in the first time for polymorphism 
study of CaCO3 in aqueous solution under mild conditions, without 
any organic additives. They showed that increasing temperature, there 
were different polymorphs for CaCO3 as can be seen in Figure 2.

Gly, glycine; PSS, poly (styrene sulfonate)
Figure 2 Differences between two methods (Double-jet and soluction route) for polymorphic calcium carbonate production using the same reagents.30,34,35

There is still a lot of divergence in the literature on the mechanism 
of calcium carbonate crystals growth, some researchers think that 
mechanism is spherulitic crystal growth and some assume the nano-
agglomeration.36 The stabilization of the calcium carbonate crystals 
is one challenge related to these procedures, precisely to keep the 
particles stable in a certain size range, avoiding the agglomeration.37 
Combining individual structures together to form large structures 
through sintering or Ostwald ripening, agglomeration is a way to 
reduce surface energy. 

For the induction of CaCO3 precipitation from microorganisms, 
a solution and microbial cells with biochemical activities are 
required. These microorganisms are capable of secreting one or more 
metabolic products (carbonate ions) which react with the calcium 
ions present in the environment. The most accepted microbiological 
method uses bacteria in which they produce urease.38,39 Urease (urea 
amidohydrolase, EC 3.5.1.5) has the ability to induce the precipitation 
of carbonates in microorganisms. Some of the bacteria that produce 
high concentrations of urease can precipitate the calcite phase: B. 
thuringiensis40 Sporosarcinapasteurii;41 Bacillus sp. CR2.42

Certain bacteria also produce crystals of the aragonite structure. 
Bacteria is able of CaCO3 production in liquid medium, called 
“Bacterium calcis”, or “Pseudomonas calcis 6”.12 The production 
of calcium carbonate crystals can occur in Pseudomonas cultures 
in an artificial seawater medium containing Na2CO3 or (NH4)2CO3. 
Researchers reported the same result with marine yeast, and claimed 
that calcium crystals resulted from accumulation of calcium deposits 
on the surface of cells in the aragonite structure.43,44 Rivadeneyra et 
al.26 presented an article in which they studied precipitation of calcium 
carbonate by Deleya hatophila using solids. It was studied in liquid 
media different concentrations of NaCl as the single salt and different 
incubation temperatures. All tested samples were able to precipitate 
calcium carbonate under different environmental conditions. The 
formed polymorphs crystals were calcite and vaterite. The relationship 
between calcite and vaterite depends on the total salt and on the type of 
medium. Subsequently, Rivadeneyra et al.45 showed that the formation 
of calcium Carbonate crystals in the aragonite phase using the same 
bacterium Deleya halophila is a sequential process that begins with 
a produced nucleus by the agglomeration of some calcified bacterial 
cells and the subsequent accumulation of more calcified cells and 
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carbonate, which acts to join the bacteria together. The process leads 
to the formation of spherical aragonite with 50μm in diameter. This 
Mineral phase and its crystalline may be similar to those found in 
inorganic media. 

Chen et al.27 synthesized vaterite by microbiological method with 
hollow bead of 10μm. When used Proteus mirabilis/Urea after 5 days 
of reaction at (27˚C), a vaterite phase was formed. However, when 
it was used Proteus mirabilis/CaCl2 solution with an ammonium 
carbonate diffusion method in 5 days of reaction at (27˚C), it was 
produced vaterite-calcite phases. In this way, it was to control phases 
by the choice of solution. Rodriguez-Navarro et al.25 and Chekroun et 
al.28 also studied calcite and vaterite formation by Myxococcus Xanthus 
bacteria. Rodriguez-Navarro et al.25 studied the changes in phosphate 
concentrations of culture medium leading to changes in local pH and 
Productivity. Besides, these factors change the structure and kind of 
CaCO3 polymorph precipitate (Vaterite or calcite). Chekroun et al.28 
showed that calcite and vaterite produced in the presence of bacterium: 
Myxococcus xanthus, shows a range of morphologies that depends if 
the bacteria are alive or dead. They showed that both live and dead 
bacteria have a passive role on the precipitation of calcium carbonate, 
acting as a model for heterogeneity nucleation. 

Drug delivery applications

Besides the knowledge of the structure and properties, surface 
modification, compatibility, and cell interaction for regenerative 
medicine, there is a need for targeting pharmaceutical drugs to 
local drug delivery for controlling diseases. The release rate can be 
controlled, depending on the size of the particles and their pores. 
Combinations of many carrier-drugs have been under study for the 
last three decades with the aim of solving the problems related to 
chemotherapy and radiotherapy. Conventional ways, being oral and 
parenteral administration of drugs, have several disadvantages due 
to the change of pharmacokinetic parameters and wide distribution 
throughout the body.

The adsorption of biomacromolecules inside porous calcium 
carbonate particles is presumably regulated by electrostatic interactions 
on the microparticle surface within pores and protein–protein 
interactions. Such assumption was presented by Sukhorukov et al.17 
working with encapsulated porous calcium carbonate microparticles 
of an average size of 5 mm. Similarly, Wang et al.16 proposed a recent 
combination method for held drug release of adsorption on porous 
CaCO3 microparticles encapsulated with polyelectrolyte multilayer 
films formed by the LbL self-assembly. Ueno et al.5 described a easy 
method to load hydrophilic drugs and bioactive proteins into CaCO3 
besides control the size of the particles. The drug release from the 
particles was confirmed by in vitro and in vivo experiments. Donatan 
et al.46 described a production of recent LbL templated based on 
spherical and nonspherical vaterite CaCO3 particles and analyzed 
geometry influences and polyelectrolyte multi layers on enzyme-
catalyzed reactions.

Fujii et al.21 study hollow microcapsules of DNA and produced 
a assembling method using porous calcium carbonate microparticles 
as templates. So, DNA was adsorbed on surface calcium carbonate 
microparticles, and then DNA was covalently cross-linked on particles 
surface with ethylene glycol diglycidyl ether. Islan et al.47 developed 
hybrid biopolymer–CaCO3 microparticles treated with Alginate lyase 
enzyma, producing a mixed gel surface with a suitable size and a 
narrow distribution. Levofloxacin was used as a ideal drug to study 

the loading and delivery for application in pulmonary drug delivery.

Wei et al.48 study a simple method to produced hollow CaCO3 
particles by the self-organization of nanocrystallites. Besides, one 
additional study using these particles as an anticancer drug delivery for 
Doxorubicin showed its advantages for local drug delivery detected by 
the pH value-sensitive structure, however, there is higher cytotoxicity 
due cellular uptake, perinuclear accumulation, and nuclear entry.

Zhao et al.20 produced polysaccharides and prepare microcapsules 
of chitosan and alginate as the multilayer-wall materials, and 
carboxylmethyl cellulose (CMC) as polyanions in the CaCO3 cores. 
Authors study the antitumor drug doxorubicin (DOX) and multilayer 
microcapsules for application in tumor treatment using in vitro and in 
vivo assays (Table 1).

Table 1 Synthesized differently CaCO3 particles for drug delivery 
applications.

CaCO3 particles 
synthesis

Average 
diameter Drug Ref.

CaCl2/Na2CO3 5μm Ibuprofen 16

PSS 4g/L

Ca(NO3)2/Na2CO3 5μm Doxorubicin 18

CMC 5%

CaCl2/Na2CO3 140.7/ Betamethasone 
phosphate

5

BSP 5% 44.8 nm

650/1300 rpm

Ca(NO3)2 /Na2CO3 3-5μm Doxorubicin 20

CMC 5%+(chitosan/alginate)

CaCl2/Na2CO3 4, μm Levofloxacin 47

Gly PH10 and Alginate

CaCl2 and K2CO3 2μm Methylene blue 49

PSS 4g/L

CaCl2/Na2CO3 4μm Doxorubicin 50

PUA/PSS

CaCl2/Na2CO3 5μm Doxorubicin 51

CMCh 5mg/mL 0.4μm

CaCl2/Na2CO3 4-6μm Ibuprofen 52

PSS 4g/L

Alginate

Ca(NO3)2 /Na2CO3 50-200nm Etoposide 53

Ethanol and Citric Acid  

PSS, poly (sodium 4-styrenesulfonate); BSP, betamethasone sodium 
phosphate; Gly, glycine; EG, ethylene glycol; PAH, poly (allylamine 
hydrochloride); PUA, poly (urethane-amine); CMC, carboxylmethyl cellulose; 
CMCh, carboxymethyl chitosan.

Conclusion
Calcium carbonate nano-microparticles can be produced by many 

methods, based on chemical or biological processes, resulting in a 
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broad range of characteristics (size distribution, crystalline phase, 
morphology, specific surface area, internal porosity and solubility). 
Such particles found huge applications in drug delivery systems, both 
as main host unities of as microcapsules in combination with polymers 
and other macromolecules. Amongst CaCO3 polymorphs, vaterite 
particles seem to be the most interesting ones for this application 
due to its spherical shape, defect-rich structure and lower solubility. 
Depending on the drug adsorption-release conditions aimed, CaCO3 
particles’ characteristics can be tailored during the chemical or 
biological synthesis process.
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