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Abstract

Numerous tests have been used to elucidate the mechanical properties of tissues and
implants including tensile, compressive, shear, hydrostatic compression and three-
point bending in one or more axial directions. The development of a non-destructive
test that could be applied to tissues and materials in vivo would promote the analysis
of tissue pathology as well as the design of implant materials.

In this paper, we review the methods that have been used to evaluate the mechanical
properties of tissues and the invasiveness of these methods. There are several fairly
new methods that have been evaluated in the literature such as magnetic resonance
clastography (MRE), ultrasound elastography (UE), optical coherence tomography
(OCT), ocular response analysis (ORA), optical coherence elastography (OCE) and
OCT with vibrational analysis that are quite promising. Classical methods such as
constant rate-of-strain deformation as well as incremental stress-strain analysis are
useful but prove to be too destructive to tissue and therefore have limited value for
measuring tissue properties in vivo.

While these newer techniques are very useful, they must be modified to consider
viscoelastic effects of polymer behavior and compressibility that may occur during
deformation in order to provide accurate information about implants and tissues.
Non-linear behavior, strain-rate dependence and volumetric effects that occur during
mechanical loading of tissues and implants are very important considerations in the
measurement of mechanical properties of tissues and implants. Mechanical testing
results obtained using these new methods must be compared and be consistent with
“gold standard” results obtained from constant rate-of strain experiments.
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Introduction

Tissues transduce internal and external mechanical signals into
changes in tissue metabolism that result in changes in structure and
function through a process termed mechanochemical transduction.'-
Mechanical loading plays a central role in vertebrate development,
evolution, tissue maturation and development of tissue fibrosis during
wound healing."> Abnormal mechanochemical transduction proces-
ses may also lead to tissue fibrosis in diseases such as osteoarthri-
tis.® and cancer.* Therefore, it is necessary to evaluate the mechanical
properties of implants to begin to understand how their properties
affect mechanochemical transduction of the surrounding tissues and
the interaction with tissue engineered implants. Mechanical mismatch
between host tissue and implants lead to intimal hyperplasia in vas-
cular applications and the formation of tough capsules composed of
extracellular matrix in areas such as the breast.?

Beyond the need to characterize mammalian tissues by mechanical
means, it is important to be able to characterize implants that are
used as replacements or to augment tissues.” While the bulk of
polymers used in medicine include, polyglycolic acid, polylactic
acid, polydimethylsiloxane, polytetrafluoroethylene, polyethylene,

polyacrylates, polyurethanes and natural polymers such as collagen,
hyaluronan, alginates and silk,’ their properties vary extensively
depending on how they are compounded and processed. Clearly the
strength and stiffness of synthetic sutures, wound dressing materials,
bandages, vascular grafts, and artificial valves are important parameters
that need to be understood to prevent premature mechanical failure of
medical devices.

The mechanical properties of implants and tissues has been the
subject of extensive research and books.>”’ These properties support
the proper physiological function in many applications including
Cardiology, Dermatology, Neurology, Ophthalmology, Orthopedics,
Urology and many other disciplines in medicine. For example,
energy storage, transmission and dissipation by tendons in the
musculoskeletal system, by the pericardium that surrounds the heart,
and the duramater, that covers the brain, are important in preventing
stress fractures, cardiac dilatation, and brain injuries, respectively.'$
For this reason, improved methods are needed to study the mechanical
properties of tissues and implants. Yamada.® published a pioneering
textbook describing the strength of tissues that has been an important
reference in this field. Most of the early measurements were made
using uniaxial deformation at a constant rate-of-strain. Later studies
suggested that tissues were viscoelastic and therefore their properties
were dependent on the rate of deformation. The viscoelasticity oftissues
and polymers has made analysis of the mechanical properties of these
materials more complicated’ but the application of incremental stress-
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strain experiments has resulted in the ability to correct mechanical
measurements for time-dependence and viscoelasticity® (Figures 1)
(Figure 2). Correction for the time-dependence is accomplished by
breaking the stress into an elastic component and a viscous component®
(Figure 3). The elastic component for ECM has been shown to be
strain-rate independent while the viscous contribution varies based
on the strain-rate of testing.? Therefore, meaningful measurements
of the mechanical properties of tissues containing collagen can be
accomplished by measurement of the elastic modulus.! All other
measurements are subject to strain-rate dependence; the “apparent”
modulus increases with increased strain rates’ leading to modulus
values that are variable and not material constants.
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Figure | Diagram illustrating the concept of viscoelasticity. If a weight
is placed on a rubber band at time zero and the initial length is Lo, then
instantaneously when the weight is paced on the rubber band the length
increases as shown in middle panel of the figure.This instantaneous or elastic
increase in length is followed by a slow continual increase in length until the
length reaches an equilibrium value that does not change with time.The initial
increase in length at t=o is the elastic response and the slow increase in length
over time is the viscous response. When the weight is removed, the length
will decrease instantaneously by the elastic component. However, the viscous
component results in an increase in length that may lead to a permanent
deformation of the material. If the weight was hung on a stainless steel wire,
the viscous response would be negligible and the increase in length would be

totally reversible on removing the weight.?

Most mechanical tests require use of stresses and strains that cause
permanent damage to tissues and implants. While ultrasonic'®!!
and elastographic measurements'>!"* do not destroy tissue, these
measurements require use of models for tissue behavior that assume
linear Hookean behavior (stress and strain are linearly related) and
incompressibility (Poisson’s ratio of 0.5), two assumptions that lead
to incorrect determinations of mechanical parameters’ Therefore,
there is a need to develop methods that can be used to measure
the elastic modulus of tissues and implants that is non-destructive
and can be corrected for viscoelastic behavior. The purpose of this
review is to examine:

a. The methods that are available to evaluate the mechanical pro-
perties of implants and tissues; and

b. To point out the limitations of each technique and how these
limitations can be circumvented.
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Figure 2 Stress-strain curve for rat back skin tested in tension at strain rates
of 10% and 50% per minute. This figure illustrates that at higher strain rates
skin and other extracellular matrices (ECMs) appear to have a higher value
of the modulus (slope of the stress-strain curve) due to viscoelastic effects.
Therefore, the modulus must be corrected for changes in the strain-rate to
reflect the viscoelastic effect.
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Figure 3 Incremental stress-strain curve for human articular cartilage tested
in tension. Incremental stress-strain curves are constructed by allowing the
stress to relax to equilibrium after each strain interval is applied. By plotting
the equilibrium stress versus strain and calculating the slope, an elastic
modulus is obtained. The elastic modulus is strain-rate independent for ECMs
composed primarily of collagen fibers

Theory of mechanical properties of materials

For the simplest loading condition in a single direction of an ideal
material, the stress (force per unit area) and the strain (natural log of
the change in length divided by the original length) are linearly related
through a constant termed the modulus or stiffness (E) as indicated in
(Equation 1).

Stress=ExStrain [1]

This assumes the material is homogeneous (behaves identically in
all three geometric directions), that the stress and strain are linearly
related (linear Hookean behavior) and that the material properties
are not dependent on the time of observation. However, tissues and
implants do not follow these assumptions: their behavior is non-linear,
they are non-homogenous, and the behavior depends on the time of
observation (Figures 1 through 4). Therefore, the use of (Equation
1) to analyze the behavior of tissues and implants is severely limited
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since measurement of a modulus that is dependent on the time of
observation and extent of loading severely challenges the accuracy of
the results. In addition, the use of (Equation 1) or a similar equation
that assumes that the material deforms without a change in volume
(Poisson’s ratio of 0.5) also presents an accuracy challenge since it has
been observed that Poisson’s ratio differs greatly from 0.5 for tissues.
The reported values of Poisson’s ratio vary from 0.125 for nucleus
pulposus' to 1.87 for the surface zone of human femoral cartilage.'
Therefore, any methods that make the assumptions of:

a. Incompressibility and

b. Time-independence of the mechanical properties may result in
large errors when E is calculated.

Correction of the measurements for the elastic component of the
observed stress or force® and correction for the change in volume
that occurs during deformation is necessary to get accurate results.
Keeping this in mind, below we will consider the methods used to
determine the mechanical properties of tissues and implants.

Methods for mechanical testing of tissues and implan-
ts

Constant rate-of-strain experiments: Traditionally, tissues and im-
plants have been tested using constant strain-rate experiments where
a sample is deformed at a constant rate until failure occurs either in
tension or compression (Figure 2) (Table 1). The modulus (E) is ob-
tained from the slope of the stress-strain curve and does not require
assuming a value of Poisson’s ratio. The test requires mounting the
sample ends in grips and is usually conducted until the sample fails in
tension (Figure 2). As pointed out in Figure 2 the slope (E) depends

Table | Selected methods used to measure the mechanical properties of tissues
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on the rate of deformation. As the sample is stretched at a higher rate
of strain, the modulus appears to increase because the sample does not
have time to relax during deformation. This test can be done in one or
more loading directions and can be repeated many times during fati-
gue tests in tension and compression. The limitations to this test are:

a. The sample is destroyed during testing;
b. The results need to be corrected for strain-rate dependence; and

c. The value of E is difficult to determine from the slope of the
stress-strain curve when the slope is rapidly changing.

Incremental stress-strain tests: This test is conducted in tension or
compression in a very similar manner to constant rate-of—strain me-
thods except the sample is loaded in strain increments as shown in (Fi-
gures 3) (Figure 4)> (Table 1). After each strain increment the sample
is allowed to relax under tension or compression until it reaches its
final dimensions. At that time another strain increment is added and
the process is repeated. The data is plotted both as a total stress-s-
train curve and an elastic stress-strain curve (stress after relaxation has
occurred) similar to that done in constant rate-of-strain experiments.
The elastic modulus is obtained from the slope of the stress-strain
curve after relaxation has occurred. It turns out for several collage-
nous tissues the elastic modulus is strain-rate independent? and the
elastic component contributes between 50 and 70% to the total stress
depending on the degree of orientation of collagen fibers® The value of
this method is that it gives an elastic modulus value that is a material
property (not strain-rate dependent) but the test also requires destruc-
tion of the tissue. It should be noted that relaxation of the material
to equilibrium at each step may require up to 24 hrs and is a time
consuming process.

Method

Selected reference

Limitation of results

Contact manipulation Sugimura et al.'®

Constant-rate-of strain Yamada.®
Incremental stress-strain Dunn & Silver.?
Magnetic resonance elastography Low et al."”
Ocular response analyzer Ruberti et al.'®
Oil microdroplet formation Campas et al."”
Kennedy et al."?

Wang & Larin.?

Optical coherence elastography
Uniaxial tensile loading Yamada.®
Ultrasound elastography Zaleska et al.2
Vibrational analysis and OCT Li etal®

Shah et al.®

Can be invasive

Destructive testing

Destructive testing

Assumes hookean behavior & incompressibility
Measures deflection of tissue

Determines local forces

Assumes hookean behavior &, incompressibility

Destructive testing
Assumes hookean behavior & incompressibility
Does not measure E directly

Destructive testing

Contact manipulation methods: Sugimura et al.'® review methods
for measuring forces and stresses in situ in living tissues by applying
physical forces. The methods require a pushing, pulling, applying li-
ght energy, ablation of tissue using lasers, applying liquid droplets and
measuring quantities such as the birefringence of anisoptropic tissues
to evaluate the tissue reaction to applied forces. This approach gives
values of local mechanical influences on tissues based on the reaction
to applied forces. The results may be difficult to interpret in terms
of standard mechanical parameters, such as the modulus, since the

measurements are made under local non-equilibrium conditions. The
method also requires destruction of the tissue in some cases.

Magnetic resonance elastography (MRE): Low et al."” review the
use of magnetic resonance to calculate values of the modulus of tis-
sues. In this method, mechanical excitation is produced by pneuma-
tic, electromechanical, or piezoelectric stimulators positioned next to
the body. The tissue is loaded by one of these means and then the
MRI signal is collected. The phase shift in the MRI signal is used
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to calculate a value of the modulus; however, the workers assume
that Poisson’s ratio is 0.5 and that the tissue density is 1.0g/cc. These
assumptions create calculation errors since Poisson’s ratio has been
shown to vary from 0.5 for tissues. The value of this technique is that
it can be used non-invasively in real time; however, use of this techni-
que requires correction for Poisson’s ratio and strain-rate effects to be
entirely accurate.
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Figure 4 Total, elastic and viscous stress-strain curves for avian tendons
tested in tension. Total or instantaneous stress, equilibrium or elastic stress
and the difference between total and elastic stress (viscous stress) are plotted
versus strain for turkey gastrocnemius tendons prior to mineralization. The
slope of the elastic stress-strain curve is a material constant after correction
for the collagen content and orientation of the collagen fibers with respect to
the loading direction.

Ocular response analyzer (ORA): The Ocular response Analyzer is
a clinical device that uses a high speed air puft to deform the cornea.
Changes in shape of the anterior surface are tracked using an infrared
beam reflected from the surface and aligned with the geometry of a
detector.'® In this technique corneal deformation is tracked after the
air puff is applied to the corneal surface. Differences in the pressures
between the inward and outward flattening of the cornea are reported
as the corneal hysteresis. Changes in the corneal hysteresis are cor-
related with disease states anecdotally. The non-invasiveness of this
technique is a positive attribute of this method. However, the inability
to relate the results to standard mechanical testing parameters limits
the utility of this method.

Oil microdroplet deformation: Campas et al.!” describe a method
for determining cell-generated mechanical forces within living cells
by introducing an oil droplet coated with biologically compatible mo-
lecules between cells. These workers use fluorocarbon oils immiscible
in vegetable oils and stabilize the droplets using a biocompatible sur-
factant. The internal tension in the droplet is adjusted to allow measu-
rement of the stresses applied by different types of cells. The geome-
try of the droplet is related to the local cellular forces through Lapla-
ce’s Law. Equations are developed that relate the droplet shape in 3D
and the anisotropic stresses responsible for inducing the deformation.
Oil droplet shape changes are introduced into these mathematical
models to calculate intercellular forces and estimate the mechanical
interactions that occur in living systems. The authors confirmed with
this technique that stresses generated by mammary epithelial cells are
myosin [I-dependent and more than 2-fold larger than those generated
by tooth mesenchymal cells.

This is an interesting approach to measure local forces that can be
combined with other more macroscopic methods to collect mechanical
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data on both local and macroscopic properties of cells and tissues. A
consideration of the mathematics of the approach used in interpreting
the results is that it gets complicated when one is working in three
dimensions with non-uniform cell morphologies.

Optical coherence elastography (OCE): Kennedy et al.'>"* & Wang
et al.?® have recently reviewed the use of optical coherence elastogra-
phy for the analysis of tissue mechanical properties. This technique
uses light that is reflected off a surface and compared to the non-re-
flected light to create an image and to measure displacement after
the tissue undergoes a small displacement. Mathematical modeling
is used to calculate the tissue modulus assuming the tissue is a linear
elastic solid and that Poisson’s ratio is 0.5. This technique is non-in-
vasive and can be used to evaluate tissue in situ. However, the values
of moduli obtained from the models used appear lower than those cal-
culated from destructive testing, suggesting that the strains introduced
are not large enough to deform the structural components of the tissue.

Ultrasound elastography (UE): Drakonaki et al.?! point out that ul-
trasound elastography is referred to by a number of terms including
strain elastography, compression elastography, sonoelastography, and
real-time elastography. Using these techniques a low frequency com-
pression is applied to the tissue, frequently via the hand held trans-
ducer. The applied compression induces a strain and the modulus is
estimated from the change in the echo before and after the force is
applied. Zaleska-Dorobisz et al.2> & Low et al.'” review the use of
ultrasound to calculate the modulus values of tissues for different cli-
nical applications. This technique assumes that the tissue is a linearly
elastic solid that has a Poisson’s ratio of 0.5 and does not measure the
modulus directly. Clinically, this technique has been used to identify
pathologic changes in a number of diseases. However, the data obtai-
ned from UE will depend on the frequency of sound used in the mea-
surements and the assumptions made in converting the displacement
to elastic modulus.

Ultrasound devices equipped with a sonoelastography option
enable more accurate imaging and evaluation of the nature of lesions
situated at small depths beneath the tissue surface in breast, thyroid,
testicles, prostate and some groups of lymph nodes.?

Vibrational analysis and ocular coherence tomography (OCT): Li
et al.” report creation of a surface wave in the cornea and evaluation
of the mechanical properties using surface wave velocity measure-
ments. They use pulsed laser excitation to create a surface wave and
estimate the modulus from an equation that relates the surface wave
velocity to the modulus. Song et al.>* use ultrasound to create a shear
wave and used OCE to measure the properties of tissue. The above
studies assumed a value for Poisson’s ratio and a density to calcula-
te the mechanical properties. The assumption of a value of 0.49 for
Poisson’s ratio leads to calculation errorsas discussed above. These
methods are non-invasive and if modified to correct for viscoelasticity
and incompressibility would give improved results.

Shah et al.” used vibrational analysis in concert with OCT to
measure the natural frequency of decellularized dermis (Figure 5)
and silicone rubber. They applied an acoustic vibration to the samples
under tension and showed that the natural frequency squared obtained
from the change in frequency of the reflected light was directly
related with the tensile modulus obtained in an incremental stress-
strain experiment, Moduli data from vibrational analysis compared
very well to moduli obtained from incremental stress-strain curves
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(Table 2). Their method did not rely on the assumption of a value
of Poisson’s ratio; this technique would be of value clinically if the
measurements could be made non-invasively in situ.

T T T
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Weighted Displacement( um)
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Figure 5 Tensile incremental stress-strain curve (top panel) and natural

frequency (bottom panel) determination based on vibrational analysis and

OCT for decellularized human skin.25 The modulus values based on tensile

incremental stress-strain curves and vibrational analysis combined with OCT

are shown in (Table 2).

Table 2 Moduli for decellularized dermis loading cycle. Results derived from
the loading portion of the tensile stress-strain measurements and vibrational
analysis for the first and second loading cycle at 12% strain. Note the similarity
between modulus values measured using incremental stress-strain curves and
vibrational analysis Shah et al.

Material Tensile testing Vibrational analysis
Cycle
modulus modulus
Dermis | 5.04 MPa 5.79 MPa
2 4.90 MPa 5.79 MPa
Discussion

Non-destructive and non-invasive characterization of tissues and
implants has been an important goal for researchers for decades.
Unfortunately, the use of ultrasound and elastography provide only
estimates of the exact values of mechanical parameters such as
the modulus.'®!® OCE has been recently applied to studying tissue
properties in health and disease; however, the values reported for
tissue moduli are in the kPa range'? as opposed to the MPa range that
is expected for biological polymers.>? These methods would be very
useful if the techniques would use models that give similar results to
those obtained from in vitro constant rate-of strain measurements after
strain-rate and volume effects are considered.
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Several diseases such as Osteogenesis Imperfecta'' and tumor
differentiation’” are characterized by changes in the mechanical
properties such as modulus and hardness. However, it is important
to be able to accurately calculate the value of the modulus since the
modulus depends on the exact composition of the macromolecular
components, their orientation and the degree of cross linking of the
components.’ The use of vibrational analysis and OCT if accomplished
non-invasively might give values of the mechanical properties that are
comparable to results of constant rate-of-strain measurements made
in vitro.

Conclusion

In this paper, we review the methods that have been used to
evaluate the mechanical properties of tissues. There are several new
methods such as MRE, UE, OCE, ORA, and OCT combined with
vibrational analysis; techniques that are quite promising. However, for
these techniques to provide accurate information about implants and
tissues they must consider non-linear behavior, strain-rate dependence
and volumetric effects that occur during mechanical loading. It is well
known that fluid flow during cartilage and bone deformation is an
important mechanism for energy dissipation as well as a stimulator
of tissue mechano transduction.”®* Fluid flow from tissues under
load is an important contributor to non-linear viscoelastic behavior.
To ignore these effects limits the relevance of any technique used to
determine the mechanical properties and may limit the accuracy of
these techniques.

While the reported literature values of moduli for a single tissue
may vary,” it is important to consider that the reported values are
meaningless unless the rate-of-strain is reported and other sample
parameters are known. For instance, it is well known the mechanical
properties of skin depend on sex, age, rate-of-strain, sample orientation,
sample location, exposure to sun-light or damaging chemicals as well
as disease states such as diabetes.>® Therefore, all these parameters
must be controlled in order to evaluate tissue and implant mechanics
non-invasively. While this is an enormous task, the goal of using
mechanical measurements to evaluate tissue and implant property
changes and disease progression makes this an important issue.
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