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Introduction 
Stomatal movement plays a critical role in water hydraulic 

conductivity and gas exchange capacity, which subsequently control 
nutrients uptake, temperature adjustment, CO2 assimilation, and thus 
growth, survival, and tolerance under water stress conditions Martin-
St Paul et al.1 Opening and closing of stomata is caused by a variety 
of stimuli such as light/dark, ozone, CO2 concentration, humidity and 
multiple signaling networks generated by phytohormonrs (abscisic 
acid (ABA), ethylene (ETH), salicylic acid (SA), methyl jasmonates 
(MeJA), cytokinin (CK), auxin (AUX), brassinosteroid (BR)), redox 
(H2O2 and other reactive oxygen species (ROS), nitrous oxide (NO), 
chemical signals [H2O2and other reactive oxygen species (ROS) like 
nitrous oxide (NO)], enzymes (phospholipases C and D and their 
products; inositol 1,4,5-trisphosphate (InsP3), phosphatidyl-InsP3, 
inositol-6-phosphate; farnesyltransferases, gamma-aminobutyric acid 
(GABA), protein kinases such as calmodulin-like20 (CaML20)), 
bioactive gas hydrogen sulfide (H2S), bioactive lipids (sphingosine‐1 
phosphate, phospholipids derivatives, sphingolipids, fatty acids 
like some polyunsaturated ones, linolenic and arachidonic acid), 
etc. Blackman, Bhatia, Joon-Sang, Allen, Tanaka, Vahisalu, Xia, 
Misra, Marowa, Nazareno, Jin, Eisenach, Wu, et al.2–14 In addition 
to the mentioned molecular signals, carbohydrate and polyamine 
metabolism Misra et al.,9 and interactions between protein kinases such 
as Ca2+-sensors and Sucrose non-fermenting Related protein Kinases 
(SnRK2s) may positively or negatively regulate ABA-dependent 
or independent stomatal movements Aubert Kulik, Bucholc, Kim, 
Maierhofer, Yoshida, Malcheska et al.15-21, Besides hormones 
crosstalk, the combination of different stresses, duration, severity, 
repetition, Barrero, Berger, Zandkarimi et al.,22,23,24 circadian rhythms 
Grundy, Lee et al.25,26 and sudden loss of hydraulic conductance that 
cause embolism Tombesi et al.,27 make their interpretations more 

difficult. Therefore, decoding these interactions and the process of 
embolism removal can be regarded as effective strategies to improve 
plant tolerance, recovery, and performance under stressful conditions. 
In 1974, Levitt28 reported that explosion of information on stomatal 
action led to a rejection of the old, classical theory of the mechanism, 
proposed by Scarth29 in 1932 and its replacement by Fujino30 report in 
1959, describing the concept of active K+ ion transport. Many of the 
new facts, however, do not seem to fit into either concept, and neither 
provide a sufficiently detailed, step-by-step scheme to account  for 
all the known facts. Therefore, Levitt28 provided enough information 
to support his report that is still valid and this information is now 
available for the proposal of a new scheme which embodies the best 
features of each of the above concepts and eliminates the inadequacies 
of each proposal on stomatal movement. The molecular mechanisms 
underlying this set of signal cross talks and interactions have not been 
fully discovered yet. Hence, this review article is aimed to provide 
more insights on this concept by reporting the relevant available 
literature on this subject.

Hormones crosstalk regulates stomatal movement 
during day/night cycle and under drought stress 
conditions

After perception of drought stress, abscisic acid (ABA) is 
synthesized in the plastids and transported into cytosols Xu et al.31 
in roots (root tips, vascular bundles of roots) and stem vascular 
systems (phloem companion cells and xylem parenchyma cells 
next to the phloem sieve cells and xylem vessels, respectively; leaf 
veins and florescence stems), as well as leaf mesophyll, Malcheska, 
Koiwai et al.,21,32 leaf cuticle, Wang et al.,33 and guard cells Koiwai 
et al.,32 Methyl jasmonate (MeJA), ABA and ethylene (ETH) are 
effectors of stomatal closure, however, their effects vary depending 
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Abstract

Governed by environmental stimuli and internal signaling cascades, stomatal movement 
determines water use efficiency and CO2 assimilation for photosynthesis under normal 
and stressful conditions, most importantly under water scarcity. Manipulation of these 
signaling pathways is one way to optimize plant resilience/tolerance and performance 
under constantly changing environment. Oscillations and interactions between the 
internal and environmental cues make it difficult to determine the consequence of 
these signals. After drought stress perception, the activated molecules initiate the 
generation of redox, hormone, and chemical signals, the interactions of which control 
stomatal responses. Second messengers, proteins, and intermediate chemicals then 
react with these signaling molecules to positively or negatively transmit these signals 
through a series of molecular events. This review is aimed to discuss the step-by-step 
scheme of these signaling pathways to provide insight into these molecular events 
and to incentivize further studies on their unknown aspects for improved stomatal 
responses under various environmental conditions, particularly stress conditions, and 
specifically drought stress.

Keywords: plant signaling pathways, stomatal responses, drought stress, molecules, 
hormonal and chemical signals, ABA, anion and cation channels roles in stomatal 
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on their concentrations and combinations so that respectively 
ABA+ETH+MeJA> MeJA+ABA or MeJA+ETH>ABA or 
ETH>ABA+ETH exert stronger effects to induce stomatal closure 
Nazareno & Hernandez.11 Increased cytokinin (CK) (>10-1 mol m-3) 
to ABA (<10-1 mol m-3) ratio contributes to reversal ABA-stimulated 
stomatal opening Blackman & Davies.2 Tanaka and co workers study 
on Arabidopsis demonstrated that CK and auxin (AUX) hormones 
can act as negative ABA regulators, inhibiting ABA-induced stomatal 
closure by promoting ETH biosynthesis Tanaka et al.6 

However, because He et al.34 study showed that ETH can produce 
H2O2 in light condition to stimulate stomatal closure, the effects of CK 
and AUX on inhibiting ABA-ETH-induced stomatal closure could 
possibly be attributed to their effects on hydrogen peroxide (H2O2) 
removal by CK and deactivation of nicotinamide adenine dinucleotide 
phosphate  (NADPH) oxidase to inhibit H2O2 production by AUX 
as reported by Song et al.,35 during the day, so not enhancing ETH 
production. Accordingly, during the day, CK and AUX counteract 
the effects of ABA and ETH to inhibit stomatal closure, while at 
night they cooperate with ETH at the requested concentrations for 
H2O2 removal to facilitate stomatal opening. In either case, CKs and 
AUXs induce inhibitory effects on stomatal closure, He, Song et 
al.34,35 Ethylene (ETH) plays a dual function that mediates ultraviolet 
band (UV-B)-induced stomatal closure via peroxidase-dependent 
H2O2  generation during the day He et al.34 and facilitates stomatal 
opening by H2O2 removal in darkness Song et al.36 The effects of 
ETH on stomatal closure or opening depends on ETH concentration 
and its interactions with other phytohormonrs such as CK, AUX, 
Tanaka et al.,6 and brassinosteroid (BR) that result in the generation 
of different amounts of H2O2 and nitrous oxide (NO) Shi et al.37 Like 
ETH, 24-epibrassinolide (EBR), a natural form of BR, stimulates both 
stomatal closure and opening based on its concentration-dependent 
effect on hydrogen peroxide (H2O2) homeostasis and NO Xia, Shi et 
al.8,37 BR and EBR stimulate ETH synthesis, thereby activating Gα 
protein (G protein α-subunit), and ETH cooperatively with activated-
Gα protein stimulate AtrbohF-mediated H2O2 and subsequent Nia1 
(nitrate reductase 1)-catalyzed NO production and consequently 
induce stomatal closure Shi et al.37 In contrast to CK and AUX effects, 
SA and also tannic acid act as a positive regulators of ABA, promoting 
stomatal closure by stimulating ABA biosynthesis and possibly 
reducing the activity of phosphatase and ATPase enzymes Bhatia, 
Hao et al.3,38 

Mitogen-activated protein kinase (MAPK) phosphatases might 
positively or negatively regulate stomatal closure depending on the 
interactions between MAPKs and the effects of their isoform on H2O2 
and NO generation Li & Wang.39 Thus, understanding the hormone 
crosstalk, the influence of hormones on MAPK isoforms, and MAPKs 
interactions on redox status is required for accurate interpretation 
of their effects on stomata movement. Drought stress induces ionic 
(SO4

2-), redox, and hormonal (brassinosteroid (BR), salicylic acid 
(SA)) signals and subsequently second messengers (Ca2+, InsP3) to 
regulate the transcription of important genes like the one encoding 
9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in ABA 
biosynthesis, Xia, Malcheska, Hao Estrada-Melo et al.8,21,38,40 In 
return, ABA activates anion and cation channels and regulates redox 
homeostasis-induced by NADPH oxidase activity. The NADPH 
oxidase-generated redox signals induce biosynthesis of ABA and 
consequently an ABA self-regulatory system is generated, which 

plays a fundamental role in regulation of many aspects of cellular 
processes and stress responses such as stomatal closure (Figure 1) 
Nazareno & Hernandez, Malcheska, Harb, Fujita, Castillo, et al.11,21,41–

43 During the day, methyl jasmonate (MeJA) interacts with ethylene 
(ETH) Nazareno & Hernandez11 or ABA to promote stomatal closure 
(Figure 1) Munemasa et al.44 In Arabidopsis, ABA-signaling activates 
Ca2+-dependent protein kinases (CDPKs), Ca2+ protein kinase (CPK), 
CPK3, CPK6, CPK4, and CPK11 to phosphorylates ABA-binding 
factor (ABF) transcription factor (TFs), regulating gene expression 
involved in MeJA biosynthesis Munemasa, Li et al.44,45 ABA-activated 
form of CPK6 induces genes expression encoding both MeJA and ETH 
biosynthesis, which, in return, activate NADPH oxidases to generate 
redox signaling. H2O2 production is mediated by ETH- or ABA-
mediated NADPH oxidases activity, while MeJA directly induces 
NO, and ROS generation (Figure 1) Munemasa, Li, Hossain et al.44–46 
Unlike ABA that induces H2O2 generation by activating open stomata 
1 (OST1) and subsequently activation of NADPH oxidases, MeJA 
is capable of inducing ROS and NO possibly through activation of 
NADPH oxidases by cyclic adenosine 5’-diphosphoribose (cADPR), 
the molecular mechanisms of which remain unknown Hossain et al.46 
MeJA-induced cADPR function downstream of ABA-induced cyclic 
guanosine monophosphate (cGMP) to activate NADPH oxidases and 
subsequently generate ROS signaling (Figure 1). Reactive oxygen 
species (ROS) react with nitrous oxide (NO) to form reactive N 
species such as peroxynitrite (ONOO-), which reacts with cyclic 
guanosine monophosphate  (cGMP) to produce 8-nitro-cGMP and 
activates cyclic nucleotide-gated channel2 (CNGC2), to elevate 
cytosolic free Ca2+ [Ca2+]cyt in association with MeJA-induced cyclic 
adenosine 5’-diphosphoribose (cADPR), stimulating ABA-MeJA 
induced stomatal closure Hossain et al.,46 Ca2+ channels are activated 
by 3’,5’- cyclic adenosine monophosphate (cAMP), but not cGMP, 
the molecular mechanism of which remains elusive Hossain et al.46 
MeJA/cADPR-generated ROS signaling respectively target CPK6 
and Ca2+ channels that elevate [Ca2+]cyt, and S-type anion channels 
to synergistically share ABA-MeJA-induced stomatal closure, but 
not in the absence of ABA (Figure 1) Hossain, Munemasa et al.46,47 

Ca2+-binding proteins (e.g. CDPKs and CaMs) have the potential to 
stimulate MeJA-mediated NO and ROS production. Munemasa and 
coworkers showed that CPK6 was not responsible for ROS and NO 
generation in Arabidopsis Munemasa et al.44 ABA-CPK6 interaction 
mediates MeJA biosynthesis and then MeJA acts as a positive 
regulator of ABA to facilitate stomatal closure by:

a)	 Inducing the expression of genes encoding ABA biosynthesis, e.g., 
AtNCED3, or 

b)	 Generating ROS and NO in an unknown way, which subsequently 
cooperatively with ABA restore CPK6 activation to open Ca2+ and 
S-type anion channels (Figure 1) Munemasa, Hossai, Hossain, 
Daszkowska-Golec & Szarejko et al.44,46–49 The activation of Ca2+ 

channels is necessary for elevation of [Ca2+]cyt, while the activation 
of Ca2+ sensor calmodulin (CaM) is necessary for MeJA-induced 
stomatal closure Munemasa et al.44 Thus, this review concludes that 
in the absence of ABA, when Ca2+ channels and Ca2+ sensor CaMs 
are not activated by ABA-induced [Ca2+]cyt elevation, the existence 
of stress-induced ETH is required Nazareno & Hernandez 11 to 
function downstream of CPK6 signaling and/or to cooperatively 
with MeJA induce stomatal closure (Figure 1).
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Figure 1 Metabolic and signaling pathways involved in stomatal closure.

Roles of ABA in stomatal movement in response to 
drought stress

ABA perception relies on its binding to various receptors localized 
in cytosol, nucleus, chloroplasts, plasma membrane Xu, Castillo, 
Zhu, Li et al.31,43,50,51 Golgi bodies, and endoplasmic reticulum Jaffé et 
al.52 Heterotrimeric guanine (G) nucleotide-binding protein-coupled 
receptors (GCRs) consisting of α, β, and γ subunits function together 
in the G protein signaling pathway to regulate ABA responses 
in stomatal movement. AtGTG1 (Arabidopsis thalian GCR type 
Grotein 1), AtGTG2, GCR1, and GCR2 interact with the G protein 
alpha subunit GPA1 (heterotrimeric Guanine nucleotide-binding 
Protein Alpha subunit 1) to mediate responses to multiple stresses, 
including drought, by regulating ABA signaling and the activity of 
many enzymes for stomatal movement. For instance, regulation of 
phosphatidylinositol-phospholipase C (PI-PLC) and phospholipase D 
(PLD) can be mediated by GCR1-GPA1 interaction Jaffé, Klingler, 
Apone, Pandey & Assmann, Urano, Chakraborty et al.52–57 In this 

context, understanding the influence of different ABA receptors, their 
interactions, and their target molecules are of critical importance for 
improved, resilient ABA-mediated signal processing and, thereby, 
stomatal conductance as occurs under optimal condition.

Rapidly upregulated by water stress, ABA Insensitive 1 (ABI1), 
ABA Insensitive 2 (ABI2) and Hypersensitive to ABA 1 (HAB1) genes 
encode clade A protein phosphatase 2Cs (PP2Cs), acting as negative 
regulators of ABA responses. Perception of ABA by its receptors 
(pyrabactin resistance1/pyrabactin resistance 1-like/regulatory 
components of ABA receptors; PYR/PYL/RCAR) sequesters ABA and 
form complexes that inactivate PP2Cs in an ABA-dependent manner 
Nazareno & Hernandez, Malcheska, Harb, Fujita, Castillo, Geiger, 
et al.11,21,41–43,58,59 Inactivation of PP2Cs by the ABA-PYLs initiates 
the ABA-dependent signal transduction pathway where SnRK2-
type protein kinases SnRK2.2, SnRK2.3 and particularly SnRK2.6/
open stomata 1 (OST1) are released to positively transmit ABA 
signalosome Zhu.60 ABA signalosome phosphorylates SnRK2s and 
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subsequently activates a series of ion channels and ABA-responsive 
element binding protein (AREB)/ABA-binding factor (ABF) basic 
leucine zipper (bZIP) transcription factors (TFs) to regulate ABA-
mediated stress responses such as stomatal movement Nazareno & 
Hernandez, Malcheska, Harb, Fujita, Castillo, Li, et al.11,21,41–43,51,59 
ABA-induced Ca2+-independent OST1 phosphorylates ABF3 to 
create a 14-3-3 binding motif required for the long-term regulation 
of gene expression, Sirichandra et al.,61 suggesting that regulation 
of ABF3 and 14-3-3 binding sites might be good candidates for the 
homeostasis of ABA signal to maintain optimal stomatal conductance. 
In this context, as the final step and perhaps the most effective 
approach to regulate stomatal movement, the interaction between 
anion channel regulators such as OST1-CDPKs, OST1-SnRK2s, and 
OST1-Ca2+-sensor proteins have the potential to improve the stomatal 
movement under both normal and stressful conditions. Regarding 
the activation of ion channels, ABA-induced OST1:YFPNT (fusion 
of the N-terminal half of the yellow fluorescent protein (YFP) to the 
C terminus of OST1) phosphorylation activates slow anion channel 
1(SLAC1) Maierhofer, Guzel Deger et al.,19,62 and quickly activating 
anion channel1/aluminium-activated anion channels (QUAC1/
ALMT12) Eisenach et al.,13 allowing the release of anions, as well 
as facilitating potassium efflux by stimulating potassium efflux 
channels and inhibiting the activity of inward potassium channels, 
respectively Maierhofer, Guzel Deger et al.19,62 (Figure 1). However, 
OST1 is unable to activate slace homolog 3 (SLAH3) Guzel Deger et 
al.62 Elevation of [Ca2+]cyt activates some of the protein kinases which 
subsequently activate anion channels; thus, some of them can be 
regulated via Ca2+-independent pathways. 

In this context, it can be surmised that upon osmotic stress-
induced [Ca2+]cyt elevation and ABA signal stimulation, ABA 
receptor-phosphatase RCAR1 interacts with ABI1 to inhibit its 
phosphorylation and negate its ABA negative regulatory effect and, 
then, RCAR1/PYL9-ABI1 integrative effect Geiger, Demir et al.58,63 
activates specific calcium-dependent protein kinases (CPKs) such as 
CPK3,6,21, and 23, and calcineurin-B-like protein-calcineurin-B-like 
protein interacting protein kinases (CBL-CIPK) (e.g., CBL1, CBL9 
and CIPK23) Maierhofer, Geiger, Guzel Deger et al.19,58,62 leading to 
the activation of both SLAC1 and SLAH3 Maierhofer, Guzel Deger 
et al.19,62 The above mentioned findings suggest that downstream of 
NO3

ˉ/Clˉ signals, regulation of CPKs and the interaction between 
CBL-CIPK might be effective to improve stomatal movement by 
regulating SLAC1 and SLAH3. Differentially induced by drought, 
salinity and ABA treatment, Responsive to Dehydration 20 (RD20) 
TF, expressed mostly in non-seed tissues in aerial parts and in guard 
cells, regulates the expression of different Ca2+‑binding caleosin-like 
proteins (CLO) genes. Consequently, depending on their isoforms, 
CLO encoded proteins differentially function as positive or negative 
regulators of ABA, stimulating stomatal closure or facilitating 
stomatal opening Aubert, Kim et al.15,18 Similarly, depending on the 
isoforms, Ca2+‑sensors Aubert, Kim et al.,15,18 and RING E3 Ubiquitin 
Ligases Lee, Lim et al.,66–68 act as positive or negative regulators of 
ABA to differentially regulate stomatal responses. Overall, stress 
conditions and the isoforms and interactions between protein kinases, 
Ca2+‑sensor proteins, and E3 Ubiquitin Ligases should be taken into 
account for determining water use efficiency, plant/crop tolerance and 
performance under drought stress conditions. 

As a positive co-regulator of ABA, root uptake of SO4
2ˉ and its 

transport in xylem sap can stimulate ABA biosynthesis in guard 
cells and, in cooperation with H2S, promotes stomatal closure Jin, 

Malcheska et al.12,21 SO4
2ˉ upregulated the expression of NCED3 gene 

involved in ABA biosynthesis, thereby activating QUAC1/ALMT12 
anion channels (Figure 1) Malcheska et al.21 H2S participates in 
stomatal closure by regulation of ABA and NO production as well 
as anion and, particularly, K+ channels activities. However, because 
of the contradictory results found up to now more investigations are 
required in order to fully understand the effects of factors responsible 
for SO4

2ˉ and H2S functional diversities and their interactions on 
stomatal closure by regulation of ABA and NO production and 
activity of anion channels Jin et al.12 It has been hypothesized that like 
farnesyltransferases (FTases), expression of genes encoding enzymes 
involved in SO4

2- biosynthesis/conversion such as sulfotransferases, 
phosphoadenosine-5′-phosphosulfate synthase Rath et al.69; Mueller 
& Shafqat70 5′-adenylylsulfate reductase, Setya et al.,71 cysteine 
desulfhydrases (CDes) and O-acetyl-L-serine (thiol) lyases (OASTLs) 
have the potential to stimulate stomata movement in different ways 
Jin et al.12 Related sulfur metabolites like 3′-phosphoadenosine 5′- 
phosphate play a similar role in stomatal movement Pornsiriwong et 
al.65 Regardless of ABA stimulation, future studies about the SO4

2ˉ and 
hydrogen sulfide (H2S) interaction and their intermediary regulators 
may provide valuable information to show if SO4

2ˉ and H2S have the 
capacity to directly activate anion channels similar to HCO3

ˉ effects 
and affect stomatal movement.

Roles of anion channels and gated or guard 
cell outward rectifying outward K+ channel in stomatal 
movement in response to drought stress

The influx of Ca2+ from plasma membrane and tonoplast into 
cytoplasm and anions (Clˉ, NO3

ˉ, SO4
2ˉ, Mal2ˉ) efflux from cytoplasm 

and acidification of the cytosol by H+ influx depolarize the plasma 
membrane of guard cells giving rise to voltage-activation of the K+ 
release channel gated or guard cell  outward  rectifying outward K+ 

(GORK) and deactivation of K+ influx channels. Inhibited influx 
along with enhanced efflux of K+ cause guard cell turgor loss and 
stomatal closure (Figure 1) Marowa, Jin, Malcheska et al.10,12,21, 
Daszkowska-Golec & Szarejko49; Zhang et al.72 At low concentration, 
de-protonated form of malic acid functions as a signaling molecule 
that activates the vacuolar Clˉ inward rectifying channel ALMT9 and 
causes enhanced Clˉ uptake during stomatal opening Eisenach et al.13 
Phosphorylation  by protein kinases or phosphatases regulates the 
activity of plasma membrane H+-ATPase in guard cells, facilitating 
stomatal closure Daszkowska-Golec & Szarejko49; Haruta et al.73 
ABA, ABA-induced H2O2 Zhang, Planes et al.64,74 Phosphatidic 
acid (PA) Camoni et al.75 and Ca2+ Kinoshita et al.76 all inhibit the 
activity of H+-ATPase. GCR1-GPA1 and Phospholipase Dα1/δ 
(PLDα1/PLDδ) genes are involved in plant growth and development 
processes and responses to abiotic stresses and ABA signaling. They 
are involved in  ABA-induced stomatal closure likely by inducing 
ROS accumulation and signaling, affecting GORKs activity Pandey 
& Harb, Assmann, Chakraborty, Chen, Zhao, Uraji, et al.41,54,57,77–79 

PLDα1 interact with G protein (GPA1; Gα subunit of a heterotrimeric 
GTP-binding protein) and 14-3-3 protein to regulate cell signaling and 
metabolism in plants Mishra, Hong et al.80,81 While PLDα1 positively 
transmit ABA signals to induces stomatal closure, PLDα1-GPA1 
interaction suppresses ABA signaling to facilitate stomatal opening so 
that ABA signal in gpa1 and pldα1 single knockout mutants is not strong 
enough to inhibit stomatal opening, but GPA1 signal does not affect 
stomatal closure Mishra et al.87 PLD-produced PA induces stomatal 
closure by firstly binding to the AtrbohD and AtrbohFN-terminus and 
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stimulating ROS production, secondly by activating protein kinases 
(e.g., H+-ATPase, protein kinase C, and MAPKs), and thirdly by 
suppressing ABI1. PLDα1-produced PA interacts with ABI1 at 1:1 
ratio and, thereby, inhibits ABI1 translocation from the cytosol to the 
nucleus and accordingly stimulates stomatal closure; however, it does 
not inhibit stomatal opening Mishra, Hong et al.80,81 Under salinity 
and drought stresses, intracellular Ca2+ ([Ca2+]i)

 elevation stimulates 
PLDα1-mediated PA production which subsequently interacts with 
SnRKs and regulates activity of vacuolar H+-ATPases. These proton 
pumps help to maintain the proton gradient that drives Na+/H+ 
antiporter activity Hong, Bargmann et al.81,82 Increased expression of 
Arabidopsis PLDα1 in canola promoted stomata movement and, thus, 
improved water status, biomass accumulation and yield by enhancing 
drought tolerance Lu et al.83 Enhancing tolerance to both drought and 
salinity, PLDα1 and PLDδ cooperatively regulate ABA signaling in 
guard cells, but their functions do not completely overlap Uraji et al.79 

There are ways of regulating stomatal movement at molecular level 
independent of ABA, and one of the most interesting of these regulating 
mechanisms is the one starred by a protein family involved in the post-
transcriptional regulation of gene expression known as Glycine-rich 
RNA-binding proteins (GR-RBPs or GRP) Kwak, Kim et al.84,85 GRP2 
and GRP4, two members of the eight members of the GR-RBP family 
found in Arabidopsis, have an impact on seed germination, seedling 
growth, and stress tolerance of Arabidopsis plants under cold, salt, 
and dehydration stress conditions Kwak, Kim et al.84,85 The functional 
role and mechanism of action of GR-RBP7 has been investigated in 
relation to plant response to abiotic stress using a transgenic approach. 
It has been observed by Histochemical analyses of transgenic plants 
transformed with a genetic construction with the promoter of GR-
RBP7 fused with GUS (GR-RBP7PRO:GUS) that GR-RBP7 is highly 
expressed in guard cells. GRP7 action affects stomatal opening under 
drought and salinity conditions, and stomatal closing under cold and 
freezing, indicating that GRP7 exerts a negative effect on the first two 
types of abiotic stresses and a positive impact on the second one Kim 
et al.86 GRP7 overexpression does not affect stomatal closure induced 
by ABA, suggesting that stomatal opening and closure regulated 
by GRP7 occur in an ABA-independent manner. No differences in 
seed germination or seedling growth were found between wild-type, 
GRP7-overexpressing transgenic plants and grp7 mutants when 
treated with ABA further supporting the hypothesis that GRP7 affects 
stomatal opening and closing in an ABA-independent manner. GR-
RBPs are involved in post-transcriptional gene expression, so it is 
conceivable that GR-RBP7 interacts with messenger RNAs (mRNAs) 
of genes closely related to stomatal movements in guard cells and in 
this manner it is able to modulate the mRNA processing and folding, 
with different results on stomatal movement depending on the nature 
of the stressful condition Kim et al.86 

Concluding remarks
Manipulation of the signaling pathways for optimizing plant 

resilience/tolerance and performance under constantly changing 
environment was the focus of this review. This review postulated that 
after drought stress perception, the activated molecules initiate the 
generation of redox, hormone, and chemical signals, the interactions 
of which control stomatal responses. It further reported that the 
second messengers, proteins, and intermediate chemicals then react 
with these signaling molecules to positively or negatively transmit 
these signals via a series of molecular events. Moreover, this review 

discussed the step-by-step scheme of these signalling pathways to 
provide insight into these molecular events and to incentivize further 
studies on their unknown aspects for improved stomatal responses 
under various environmental conditions, particularly stress conditions, 
and specifically drought stress. Downstream of ABA signal, ET-MeJa 
homeostasis, OST1-CDPKs, OST1-SnRK2s, and OST1-Ca2+-sensor 
proteins, CPKs, CBL-CIPK, E3 Ubiquitin Ligases, and PLDs act as 
the final effectors to regulate anion and cation channels activity and, 
thereby, stomatal movement. Comparing the variations in signaling 
pathways under stressful and optimal conditions, regulation and 
perhaps co-regulation of these effectors require further investigations 
in order to find the most effective approaches in alleviating the 
disruptive effects of drought stress on stomatal movement that is 
probably the most important factor in stomatal gas exchange (water 
vapor and CO2 efflux and influx), and consequently photosynthesis and 
plant/crop yield. Revealing the molecular steps of molecular signals, 
this review provides insights into the crosstalk signals and changes 
in the mode of actions of signaling molecules that vary depending 
on the activity of different signaling pathways and the interactions 
between signaling molecules with the target molecules and, thereby, 
facilitates the correct interpretation of the signaling events involved 
in stomatal movement under normal and drought stress conditions. 
Consequently, the correct interpretation of the signaling events would 
help the breeders to choose the most effective strategy for engineering 
drought tolerant plants with optimized stomatal responses.
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