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Abstract

Current soil management strategies are mainly dependent on inorganic chemical-
based fertilizers, which caused a serious threat to human health and environment.
Plant growth-promoting rhizobacteria (PGPR) are naturally occurring soil bacteria
that aggressively colonize plant roots and benefit plants by providing growth
promotion. Inoculation of crop plants with certain strains of PGPR at an early stage of
development improves biomass production through direct effects on root and shoots
growth. The major groups of PGPR can be found along with the phyla actinobacteria,
bacteroidetes, firmicutes, and proteobacteria. Inoculation of agricultural crops with
PGPR may result in multiple effects on early-season plant growth, as seen in the
enhancement of seedling germination, plant health, vigor, height, shoot weight, nutrient
content of shoot tissues, early bloom, chlorophyll content, and increased nodulation
in legumes. PGPRs are reported to influence the growth, yield, and nutrient uptake by
an array of mechanisms. They help in increasing nitrogen fixation in legumes, help in
promoting free-living nitrogen-fixing bacteria, increase supply of other nutrients, such
as phosphorus, iron and produce plant hormones that enhance other beneficial bacteria
or fungi. Now a day’s an increasing number of PGPR being commercialized for
various crops. Subsequently, there has been much research interest in PGPRs. Several
reviews have discussed specific aspects of growth promotion by PGPRs. Therefore,
PGPRs can help to generate wealth cooperatively in local communities, reducing the
need for more expensive manufactured products, such as nitrogenous fertilizers and
use of PGPR in world has the potential to provide valuable insight.
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Introduction

Conventional agriculture plays a significant role in meeting the
food demands of a growing human population; this has also led to
an increasing dependence on chemical fertilizers.! As agricultural
production strengthened over the past few decades, farmers became
more and more dependent on chemical fertilizers as a relatively
reliable method of crop protection helping with economic stability
of their manoeuvre. Chemical fertilizers are industrially manipulated
substances composed of known quantities of nitrogen, phosphorus
and potassium, and their exploitation causes air and ground
water pollution by eutrophication of water bodies.> Nevertheless,
increasing use of chemical inputs causes several negative effects,
i.e., development of pathogen resistance to the applied agents and
their non target environmental impacts.>* An ample assortment of
agriculturally important microorganisms have been taken use of
crop health and production management, which comprise nitrogen
fixers like Rhizobium, Bradyrhizobium, Sinorhizobium, Azotobacter,
Azospirillum, phosphate solubilisers like Bacillus, Pseudomonas,
Aspergillus, Enterobacter and Arbuscular mycorrhizae in agriculture.
They are well known to increase plant growth, induce host plant
resistance and crop yield. The rhizosphere region has been distinct
as the volume of soil directly influenced by the presence of living
plant roots or soil compartment influenced by the root.® Rhizosphere
supports large and active microbial population capable of exerting
beneficial, neutral and detrimental effects on the plants. Various free-
living soil bacteria that are capable of applying beneficial effects on
plants in culture or in a protected environment via direct or indirect

mechanisms.”® The focus of this review is potential of PGPR which
act as biofertilizers, either directly by helping to provide nutrient to
the host plant, or indirectly by positively influencing root growth and
morphology or by aiding other beneficial symbiotic relationships.

Effect of chemical fertilizers on environment

Now a day an agricultural production can be increased efficiency
by fertilization and it is only way for recovery of production. Non-
organic synthetic fertilizers mainly contain phosphate, nitrate,
ammonium and potassium salts. Fertilizer used to add nutrients
to the soil to promote soil fertility and increase plant growth. They
reduce the food value of plants. The nutrient reservoirs in the soil
shrink when crops are removed from the field at harvest. This nutrient
export creates a phosphorus deficit, necessitating regular phosphorus
addition to replace the harvested phosphorus. This leads to the need
of frequent application of chemical phosphate fertilizers, but its use
on a regular basis has become a costly affair and also environmentally
undesirable.” The excessive use of chemical fertilizers in plants
not only affects the quality of food but also environment. Fertilizer
industry is considered to be source of natural radionuclides and heavy
metals as a potential source. It contains a large majority of the heavy
metals like Cd, Pb, Hg and as!®!! and some results in the accumulation
of inorganic pollutants.'? Plants absorb the fertilizers through the soil;
they can enter the food chain. Thus, fertilization leads to water, soil
and air pollutions. In recent years, fertilizer consumption increased
continuously throughout the world, causes severe environmental
problems as well as many diseases in human like Stomach cancer,
goiter, and several vector borne diseases. In infants it is the reason
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of blue baby syndrome. It also leads to groundwater contamination.'?
There are also a number of fastidious diseases for which chemical
solutions are few and ineffective.'* Biological control is thus being
considered as an alternative or a supplemental way of reducing the use
of chemicals in agriculture.'

Plant Growth-Promoting Bacteria (PGPR)

The narrow zone of soil directly surrounding the root system is
referred to as rhizosphere,'® while the term ‘rhizobacteria’ implies
a group of rhizosphere bacteria competent in colonizing the root
environment.'” About 2-5% of the rhizosphere bacteria are PGPR.'
The term PGPR was coined by Joe Kloepper in late 1970s and was
defined by Kloepper et al.,'”” as “the soil bacteria that colonize the
roots of plants by following inoculation on to seed and that enhance
plant growth”. The rhizosphere, volume of soil surrounding roots and
influenced chemically, physically and biologically by the plant root,
is a highly favourable habitat for the proliferation of microorganisms
and exerts a potential impact on plant health and soil fertility.>” Root
exudates rich in amino acids, monosaccharides and organic acids,
serve as the primary source of nutrients, and support the dynamic
growth and activities of various microorganisms within the vicinity
of the roots.?! On the basis of their location in rhizosphere PGPR
can be classified as extracellular PGPR found in the rhizosphere, on
the rhizoplane or in the spaces between the cells of the root cortex
and intracellular PGPR which exist inside the root cells, generally
in specialized nodular structures.”? PGPR represent a wide variety
of soil bacteria which grown in association with a host plant, result
in stimulation of growth of their host. PGPR have the potential to
contribute in the development of sustainable agricultural systems.
In general, PGPR function in three different ways:**?* synthesizing
particular compounds for the plants®* facilitating the uptake of
certain nutrients from the soil?’ and preventing the plants diseases,***
(Figure 1).
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Wide ranges of bacterial groups being considered as plant growth
promoting rhizobacteria include Acinetobacter, Agrobacterium,
Arthobacter, Azotobacter, Azospirillum, Burkholderia,
Bradyrhizobium, Rhizobium, Serratia, Thiobacillus, Pseudomonads,
and Bacilli in various plants,’*3! (Table 1).

The potential use of biofertilizers is now being seriously
considered as a means to reduce the quantity of fertilizers required
for crop production. This would help to minimize pollution and soil
infertility, and above all reduce grower’s costs. PGPR have been
reported to be present in high populations, in the rhizosphere and
as endophytes of many crops. They include species of Enterobacter,
Bacillus, Klebsiella, Herbaspirillum, Burkholderia, Azospirillum,
and Gluconacetobacter** The most common bacteria isolated from
sugarcane tissues have been Gluconacetobacter diazotrophicus,
Herbaspirillum rubrisubalbicans, and H. seropedicae,” whereas
Enterobacter cloacae, Erwinia herbicolla, K. pneumoniae, K. oxytoca,
Azotobacter vinelandii, Paenibacillus polymyxa, and Azospirillum
were found less often.”

The growth promotion channel by these bacteria that enhances the
plant growth was not fully known while in few ways it is understood.**
The well known mechanism for the growth promotion is through
producing various plant growth hormones that include Gibberellin
and Indole-3-acetic acid (IAA) Arshad®* solubilisation of insoluble
phosphate®® fixation of atmospheric nitrogen’’** and hore synthesis®
hydrogen cyanide production* and various antagonistic activity
against the plant pathogens.*' Therefore it is necessary to develop a
rhizobacterial population that encompasses significant plant growth
role for the improvement of agricultural practices and yield, thereby
reducing the application of chemical biofertilizer and chemical
pesticides, the present study was focused in the path to isolate an
efficient PGPR strain from the rhizosphere of sugarcane plant and to
assess the plant growth promoting activities.

Plant Growth Promoting Bacteria
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Figure | Major plant growth-promoting groups used in commercial bio-inocula for plant growth promotion.
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Table | Plant growth promoting rhizobacteria (PGPR) for which evidence exists that their stimulation of plant growth promoting traits in numerous crops

Plant growth promoting rhizobacteria (PGPR) Crops Plant growth promoting traits i};ie;?;ure
Azospirillum sp. Rice Nitrogen fixation 75
Paenibacillus polymyxa Wheat Cytokinin 112
Pseudomonas rathonis Wh'e at, Auxin production 38
Maize
Comamonas acidovorans Lettuce TAA production 13
Azoarcus sp. Kallar grass ~ Nitrogen fixation 58
Canola, .
Kluyvera ascorbata Siderophores, 117
tomato
SUD 165 TAA production
Azotobacter sp. Sesbenia, IAA production 3
Pseudomonas fluorescens Soybean Cytokinin 33
Azoarcus sp. Rice Nitrogen fixation 39
Enterobacter cloacae Rice TAA production 79
Pseudomonas sp. Mungbean TAA production 2
Alcaligenes sp. Rape ACC deaminase 27
Azoarcus sp. Sorghum Nitrogen fixation 110
Rhizobacterial isolates Wheat, rice Auxin production 65
Enterobacter sp. Sugarcane TAA production 81
Pseudomonas sp. Wheat TAA production 94
Azotobacter sp. Maize Nitrogen fixation 90
Pseudomonas fluorescens Pine Cytokinin 18
Rhizobium leguminosarum Rice TAA production 31
Pseudomonas sp. PSI Greengram Phos'phate solubilization, Nitrogen 1
fixation
Bacillus cereus RC 18, Wheat TAA production 23
Strept?myces, anthocysmcus: Pset'tdomonas Rice IAA production 11
aeruginosa, Pseudomonas pieketti
Rhizobium leguminosarum Rape & Cytokinin 85
lettuce
Bacillus licheniformis C08 spinach TAA production 111
Rhizobium leguminosarum Radish TAA production 6
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Table Continued
Plant growth promoting rhizobacteria (PGPR) Crops Plant growth promoting traits ;iie;?;ure
Azotobacter sp. Wheat Nitrogen fixation 82
Azotobacter sp. Maize TAA production 117
Mesorhizobium loti MP6, Pseudomonas fluorescens Brassica Siderophore, 27
ACCY, Alcaligenes sp. ZN4, Mycobacterium sp. HCN production, IAA production
Pseudomonas tolaasii Brassica Siderophores, 35
ACC23, TAA production
Bacillus polymyxa Wheat Nitrogen fixation 89
Bacillus pumilus Rape ACC deaminase 16
Pseudomonas fluorescens Groundnut Siderophores, 36

TAA production

Bacillus sp. Alder Gibberellin 51
Bacillus sp. Rice IAA production 17
Burkholderia sp. Rice Nitrogen fixation 11
Azospirillum lipoferum Wheat TAA production 83
Pseudomonas putida, Azospirilium, Azotobacter Artichoke Phosphate solublization 57
Gluconacetobacter diazotrophicus Sorghum Nitrogen fixation 56
Azospirillum brasilense Wheat TAA production 62
Enterobacter cloacae Rape ACC deaminase 97
Streptomyces acidiscabies Cowpea Hydroxamate 37
El3 siderophores
Gluconacetobacter diazotrophicus Sugarcane Nitrogen fixation 20
Pseudomonas sp. Rape ACC deaminase 16
Aeromonas veronii Rice TAA production 79
Bradyrhizobium sp. Radish TAA production 6
Pseudomonas cepacia Soybean ACC deaminase 24
Herbaspirillum sp. Rice Nitrogen fixation 58
Variovorax paradoxus Rape ACC deaminase 21
Herbaspirillum sp. Sorghum Nitrogen fixation 58
Agrobacterium sp. Lettuce TAA production 13
Pseudomonas putida Mung bean ACC deaminase 78
Herbaspirillum sp. Sugarcane Nitrogen fixation 12
Alcaligenes piechaudii Lettuce TAA production 13
Burkholderia verschuerenni Burkholderia sp. Sugarcane TAA production 96
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Taxonomy of PGPR

Taxonomy is defined as the science dedicated to the study of
relationships among organisms and has to do with their classification,
nomenclature, and identification* The accurate comparison of
organisms depends on a reliable taxonomic system. Even though
many new characterization methods (including gene content,
sequences of conserved macromolecules, gene order, dinucleotide
relative abundance values and codon usage) have been developed
over the last 30years and used to study phylogenetic relationships
between bacterial taxa.®

PGPR used as biofertilizers

Biofertilizers, more commonly known as microbial inoculants,
are artificially multiplied cultures of certain soil organisms that can
improve soil fertility and crop productivity. Although the beneficial
effects of legumes in improving soil fertility was known since ancient
times and their role in biological nitrogen fixation was discovered
more than a century ago, commercial exploitation of such biological
processes is of recent interest and practice. The commercial history
of biofertilizers began with the launch of ‘Nitragin’ by Nobbe and
Hiltner, of Tharand, Germany, have invented certain new and useful
improvements relating to the Inoculation of soil for the cultivation
of leguminous plants and a laboratory culture of rhizobia in 1895,
followed by the discovery of Azotobacter and then the blue green algae.
Azospirillum and Vesicular- Arbuscular Micorrhizaeare fairly recent
discoveries. In India the first study on legume rhizobium symbiosis
was conducted by N.V. Joshi and the first commercial production
started as early as 1956. However the Ministry of Agriculture under
the ninth plan initiated the real effort to popularize and promote the
input with the setting up of the National Project on Development and
Use of Biofertilizers (NPDB). Commonly explored biofertilizers in
India are mentioned below along with some salient features. Recently
PGPR have attracted the attention of agriculturists as soil inoculums
to improve plant growth and yield.* Significant increases in growth
and yield of agronomically important crops in response to inoculation
with PGPR have been repeatedly reported.”>> Studies have also
shown that the growth-promoting ability of some bacteria may be
highly specific to certain plant species, cultivar and genotype.**>*
Plant growth-promoting rhizobacteria are the rhizospheric bacteria
that can enhance plant growth by a wide variety of activities like.

Phosphate solubilizing bacteria

Phosphorus, both native in soil and applied in inorganic fertilizers
becomes mostly unavailable to crops because of its low levels of
mobility and solubility and its tendency to become fixed in soil.
The phosphate sulubilizing (PSB) bacteria are life forms that can
help in improving phosphate uptake of plants in different ways. The
PSB also has the potential to make utilization of India’s abundant
deposits of rock phosphates possible, much of which is not enriched.
PSB are group of beneficial bacteria capable of hydrolyzing organic
and inorganic phosphorus from insoluble compounds.® Phosphate
solubilization ability of the micro-organisms is considered to be
one of the most important traits associated with plant phosphate
nutrition.®® It is generally accepted that mechanisms of the mineral
phosphate solubilization by the PSB strains is associated with the
release of low molecular weight organic acids, through which their
hydroxyl and carboxyl groups chelate the cations bound to phosphate
there by converting it into soluble forms.®' The PGPR occur in soil,
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usually their number are not high enough to compete with other
microorganisms commonly established in the rhizosphere.

Thus the amount of P liberated by them is generally not sufficient
for a substantial increase of in situ plant growth. Therefore inoculation
of plants by a target microorganism at a much higher concentration
than the normal found in soil is necessary to take advantage of the
property of phosphate solubilization for plant yield enhancement.®
Inoculation of PGPR in the soil is a promising technique because
it can increase phosphorous availability®® and improves the physio-
chemical, biochemical and biological properties of soil.** So that use
of PGPR in agriculture can not only compensate for higher cost of
manufacturing fertilizers in industries but also mobilizes the fertilizers
added to soil. In addition some PSB produce phosphatase like phytase
that hydrolyse organic forms of phosphate compound efficiently.

Nitrogen fixing bacteria

About 78% of the earth atmosphere is made up of free nitrogen (N2)
produced by biological and chemical processes within the biosphere
and not combined with other elements. All plants need nitrogen for
their growth. However plants cannot get the nitrogen they need from
atmospheric supply. They can use only nitrogen that is available in
compound form. Nitrogen occurs in the atmosphere as N2, a form that
is not useable by plants. Nitrogen fixation is the first major mechanism
for the enhancement of plant growth by Azospirillum.% Azospirillum
species are aerobic heterotrophs that fix N2 under microaerobic
conditions® and grow extensively in the rhizosphere of gramineous
plants.”® The Azospirillum—plant association leads to enhanced
development and yield of different host plants.®’ This increase in yield
is attributed mainly to an improvement in root development by an
increase in water and mineral uptake, and to a lesser extent biological
N2-fixation.®*¢

Siderophore production

Iron is an essential nutrient for almost all forms of life. All
microorganisms known so far, with the exception of certain
lactobacilli, essentially require iron.” In the aerobic environment, iron
occurs principally as Fe3+ and is likely to form insoluble hydroxides
and oxyhydroxides, thus making it generally inaccessible to both
plants and microorganisms. Despite being one of the most abundant
elements in the earth’s crust, the bioavailability of iron in many
environments such as the soil is limited by the very low solubility
of the Fe3+ ion. It accumulates in commercial mineral phases such
as iron oxides and hydroxides™ therefore cannot be readily utilized
by the organisms. Microbes release siderophores to scavenge iron
from these mineral phases by formation of soluble Fe3+ complexes
that can be taken up by the active transport mechanisms. Bacteria
acquire iron by the secretion of low-molecular mass iron chelators
referred to as siderophores which have high association constants for
complexing iron. Most of siderophores are small, water soluble, high
affinity iron chelating compounds amongst the strongest soluble Fe3+
binding agents known.” Thus, siderophores act as solubilizing agents
for iron from minerals or organic compounds under conditions of iron
limitation.” A great deal of evidence exists that a number of plant
species can absorb bacterial Fe3+ siderophore complexes, and this
process is vital in absorption of iron by plants.”

Phytohormone production

PGPRs produce plant hormones both in liquid cultures and natural
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condition. The major hormones produced are Indole acetic acid
(IAA).” Tt is reported that 80% of microorganisms isolated from the
rhizosphere of various crops possess the ability to synthesize and
release auxins as secondary metabolites.” IAA plays a very important
role in rhizobacteria-plant interactions.”” The IAA synthesized
by PGPRs influenced the root hair development, respiration rate,
metabolism and root proliferation which in turn resulted in better
mineral uptake of the inoculated plants.”® TAA formation via indole-
3-pyruvic acid and indole-3-acetic aldehyde is found in a majority
of bacteria like, Erwinia herbicola; saprophytic species of the
genera Agrobacterium and Pseudomonas; certain representatives
of Bradyrhizobium, Rhizobium, Azospirillum, Klebsiella, and
Enterobacter. Most Rhizobium species have been shown to produce
T1AA.”

Nodule forming rhizobacteria

Biological N2 fixation represents the major source of N input
in agricultural soils including those in arid regions. The major N2-
fixing systems are the symbiotic systems, which can play a significant
role in improving the fertility and productivity of low-N soils. The
Rhizobium-legume symbioses have received most attention and have
been examined extensively.®* These Rhizobia (species of Rhizobium,
Mesorhizobium, Bradyrhizobium, Azorhizobium, Allorhizobium
and Sinorhizobium) inoculants are known for their ability to fix
atmospheric nitrogen in symbiotic association with legume by
responding chemotactically to flavonoid molecules released as signals
by the legume host. These plant compounds induce the expression
of nodulation (nod) genes in rhizobia, which in turn produce lipo-
chitooligiosaccharide signals that trigger mitotic cell division in roots,
leading to nodule formation.®'$3 The legume-Rhizobium symbiosis
is a typical example of mutualism, but its evolutionary persistence
is actually somewhat surprising. Because several unrelated strains
infect each individual plant, any one strain could redirect resources
from N2 fixation to its own reproduction without killing the host plant
upon which they all depend.®*° It turns out that legume plants guide
the evolution of rhizobia towards greater mutualism by reducing
the oxygen supply to nodules that fix less N2 thereby reducing the
frequency of cheaters in the next generation. Symbiotic N2-fixation
has been studied widely and exploited as a means of increasing crop
yields,”'* but rhyzobium are however limited by their specificity and
only certain legumes are benefited from this symbiosis.** %

Conclusions and future line of work

This review has shown that there is huge potential for the use of
PGPRs as biofertilizing agents for a wide variety of crop plants.”” For
this reason, there is an urgent need for research to clear definition
of what bacterial traits are useful and necessary for different
environmental conditions and plants.!’'% They must be exploited
to develop eco-friendly and safe replacement for chemical based
fertilizers. Therefore, efficient PGPR strains can either be selected
or improved.'®!1%” The success of the science related to biofertilizers
depends on inventions of innovative strategies related to the functions
of PGPRs and their proper application to the field of agriculture.'%11
The major challenge in this area of research lies in the fact that along
with the identification of various strains of PGPRs and its properties
it is essential to dissect the actual mechanism of functioning,
synergistic effects of PGPRs for their efficacy toward exploitation
in sustainable agriculture.!"""'S However, the triumph in developing
PGPRs mediated tools is greatly dependent on the development of
efficient and sensitive molecular genetics techniques like microarrays
and effective culturing methodologies to provide a better insight of
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the structural and functional diversity of the rhizosphere.!'*1?! Design
of economically feasible large scale production methodologies and
inoculation technologies are thus other critical requirements. So, deep
rooted research in this area is highly needed. PGPRs are the potential
tools for sustainable agriculture and trend for the future.
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