

# The importance of compatibility among manures and microbiota in agricultural soils

## Opinion

Monocultures are widely practiced in the modern commercial and industrial agriculture for animal feed, oil, commercial food products, agro-fuels.<sup>1</sup> Cultivated crops with genetic similarity, same growth patterns and resistant to certain common disease are perfect in the largest commercial agriculture and in terms of reduced costs in the production process.<sup>2</sup> However, it is well known that increased chemical inputs and deleterious effects on the soil ecosystem are not well understood. Toxic chemicals and different plant physiological disorders of modern monoculture destroy the wild ecosystem.<sup>3</sup> Fortunately, different types of manures, wastes, residues, compost and biochar are being tested worldwide (Table 1); however, there is few researches focusing on the compatibility among biofertilizers and soil conditioners together. In spite of the slow adoption of natural soil conditioners by commercial agriculture, organic agriculture, which is increasingly growing, is more interested on the addition of natural residues on horticultural plants and crops. Most crops associate with microorganisms in a mutually beneficial way (symbiosis). Legumes, such as soybean, associate with rhizobial bacteria. Legumes and non-legumes associate with other soil microorganisms, especially with fungi, such as arbuscular mycorrhizas (Glomeromycota), known as natural biofertilizers which establish the mycorrhizosphere.<sup>4</sup> To support sustainable agricultural systems and to deal with the effects of global change, the associated plant-soil microbial communities have been more investigated.

**Table 1** Journal articles dealing with symbiotic soil microorganisms and soil conditioners in some important agro-ecosystems

| Key words           | Number of journal articles |
|---------------------|----------------------------|
| Legume crops+manure | 947                        |
| Legumes+AMF         | 184                        |
| Grapevine+manure    | 29                         |
| Grapevine+AMF       | 22                         |
| Olive+manure        | 176                        |
| Olive+AMF           | 25                         |
| Maize+manure        | 2,227                      |
| Maize+AMF           | 233                        |
| Soybean+manure      | 911                        |
| Soybean+AMF         | 69                         |

Database survey conducted on July 2016 (SCOPUS); AMF, arbuscular mycorrhizal fungi.

The mycorrhizal symbiosis in maize was more studied in several countries worldwide<sup>5</sup> and several research groups devoted to appreciate that symbiosis.<sup>6</sup> Application of compost<sup>7</sup> efficient phosphate solubilizer microorganisms,<sup>5,8,9</sup> microbial inoculants<sup>10</sup> and biochar<sup>11</sup> as well as other soil conditioners<sup>12</sup> for crops is increasingly investigated. Agroecosystems of high economic interest such as coffee<sup>13</sup> and olive<sup>14</sup> are in the focus of new technologies for their cultivation including their associated microbiota. To compile and organize results is important to understand the effects of different soil conditioners on

Volume 4 Issue 3 - 2016

 Marcela Claudia Pagano<sup>1</sup>

Federal University of Minas Gerais, Belo Horizonte, Brazil

**Correspondence:** Marcela Claudia Pagano, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil,  
 Email marpagano@gmail.com

**Received:** July 25, 2016 | **Published:** August 04, 2016

crops, and their agricultural implications. Further studies are required to understand the microbiome in crops as well as the effects on agronomical successions and organic matter decomposition.

## Acknowledgements

None.

## Conflict of interest

The author declares no conflict of interest.

## References

- Evans J. Planted forests: uses, impacts and sustainability. Wallingford, UK: FAO and CAB International; 2009. 213 p.
- Pagano MC, Dhar PP. Arbuscular Mycorrhizal Fungi under Monoculture Farming: A Review. In: *Monoculture Farming: Global Practices, Ecological Impact and Benefits/Drawbacks*. Nath TK, et al. editors. USA: Nova Science Publishers; 2016.
- Altieri MA. Agroecological foundations of alternative agriculture in California. *Agriculture, Ecosystems and Environment*. 1992;39:23–53.
- Azcon R. *Mycorrhizosphere: The role of PGPR*. In: Morte A, et al. Root engineering. Berlin, Germany: Springer; 2014. p. 107–144.
- Pagano MC, Jorio A. The contributions of mycorrhizal fungi. In: *Microbial Bioresources*. Gupta VK, et al. editors. London, UK, p.14–28.
- Miransari M, Bahrami HA, Rejali F, et al. Using arbuscular mycorrhiza to reduce the stressful effects of soil compaction on corn (*Zea mays* L.) growth. *Soil Biology & Biochemistry*. 2007;39:8.
- Viti C, Tatti E, Decorosi F, et al. Compost Effect on Plant Growth–Promoting Rhizobacteria and Mycorrhizal Fungi Population in Maize Cultivations. *Compost Science & Utilization*. 2010;18(4):273–281.
- Bedini S, Avio L, Argese E, et al. Effects of long-term land use on arbuscular mycorrhizal fungi and glomalin-related soil protein. *Agriculture, Ecosystems and Environment*. 2007;120:463–466.
- Imaz PA, Barbieri PA, Echeverría HE, et al. Indigenous mycorrhizal fungi from Argentina increase Zn nutrition of maize modulated by Zn fertilization. *Soil Environ*. 2014;33(1):23–32.
- Pagano MC, Covacevich F. Arbuscular Mycorrhizas in Agroecosystems. In: Fulton SM, editors. *Mycorrhizal Fungi: Soil, Agriculture and Environmental Implications*. New York: Nova Science Publishers; 2011. p. 35–65.

11. Kumar V. Use of Integrated nutrient management to enhance soil fertility and crop yield of hybrid cultivar of brinjal (*Solanum melongena* L.) under field conditions. *Adv Plants Agric Res.* 2016;4(2):00130.
12. Stürmer SL, Siqueira JO. Diversity of arbuscular mycorrhizal fungi in Brazilian ecosystems. In: Moreira FMS, et al. editors. *Soil biodiversity in Amazonian and other Brazilian ecosystems*. Wallingford, USA: CABI-Publications; 2006. p. 206–236.
13. Bopadre MJ, Colombo R, Molina MCR, et al. Arbuscular mycorrhizal fungi in the alleviation of oxidative stress under cutting propagation management. In: *Mycorrhizas: Structure, Development and Functions*. Warwick E editor. 2014. p. 181–202.
14. Brito I, Goss MJ, Carvalho M, et al. Impact of tillage system on arbuscular mycorrhiza fungal communities in the soil under Mediterranean conditions. *Soil & Tillage Research.* 2012;121:63–67.